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A B S T R A C T

For Lithium-ion (Li-ion) batteries, problems such as material aging and capacity decay lead to battery
performance degradation or even catastrophic events. Predicting Remaining Useful Life (RUL) is an effective
way to indicate the health of Li-ion batteries, which helps to improve the reliability and safety of battery-
powered systems. We propose a novel neural network, AttMoE, which combines an attention mechanism
with Mixture of Experts (MoE), to capture the capacity fade trend for battery RUL prediction. When facing
the problem that raw data collected from sensors are always full of noise, AttMoE uses a dropout mask to
denoise the raw data. For RUL prediction, one key idea is that the attention mechanism captures the long-term
dependencies between elements in a sequence and more attention is paid to the important features that contain
more degradation information; another key idea is that MoE uses many experts to increase model capacity
to achieve better representations. Finally, we conducted experiments using two public data sets to show that
AttMoE is effective in RUL prediction and achieves up to 10%–20% improvement in terms of Relative Error
(RE). Our projects are all open source and are available at https://github.com/XiuzeZhou/RUL.
1. Introduction

As a portable source of energy, Lithium-ion (Li-ion) batteries have
been broadly used in transportation, aerospace, and defense military
applications [1–3]. Usually with increasing battery usage, their ca-
pacity is reduced. Failure of Li-ion batteries can lead to performance
degradation, increased maintenance costs, and even catastrophic device
failure [4–7]. To fully use the advantages of Li-ion batteries and prevent
them from causing catastrophic damage to human safety, it is necessary
to monitor the states accurately and take maintenance measures before
the failure threshold is reached [8,9].

The prediction of accurate Remaining Useful Life (RUL) effectively
indicates the health of Li-ion batteries and helps provide maintenance
plans to ensure the reliability and safety of the system [10–12]. There-
fore, for reliable and accurate battery RUL prediction, it is important
to develop methods that are divided into the following two typical
categories: model-based and data-driven. Model-based methods build
mathematical functions to reflect the physical and electrochemical
properties of batteries [13–15]. Data-driven methods model histori-
cal data, without involving any physical properties, to describe the
degradation evolution of batteries [16–18]. Because of this property,
data-driven methods have been receiving more and more attention
recently.
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State Of Health (SOH) estimation is a critical aspect of battery
performance prediction, because it indicates the overall health and
degradation level of a battery. Over the past decade, machine learn-
ing based data-driven methods have achieved great success in many
applications, such as Computer Vision (CV) [19–21], Natural Lan-
guage Processing (NLP) [22–24], recommendation systems [25–27],
and medical diagnosis [28–30]. Machine learning models analyze time
series data and extract degradation patterns to estimate the remaining
capacity [31,32].

Machine learning algorithms offer the ability to extract valuable
insights from complex and high-dimensional time series data, thereby
enabling accurate prediction, optimization, and control of battery per-
formance. To simulate the trend in decay of a battery, many researchers
have developed automated solutions with machine learning techniques.
For example, to model battery degradation, by using online learning
techniques, Liu et al. [33] developed the Relevance Vector Machine
(RVM). To model battery degradation, Nuhic et al. [34] proposed
applying the Support Vector Machine (SVM) to analyze capacity se-
quence. However, these traditional methods have limited ability to
learn nonlinear features.

Deep learning has a powerful ability to learn nonlinear represen-
tation from raw data [35–39]. The application of deep learning for
vailable online 7 February 2024
352-152X/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.est.2024.110780
Received 1 September 2023; Received in revised form 13 November 2023; Accepte
d 30 January 2024

https://www.elsevier.com/locate/est
https://www.elsevier.com/locate/est
https://github.com/XiuzeZhou/RUL
mailto:chendaoquan@zime.edu.cn
mailto:zhouxiuze@foxmail.com
https://doi.org/10.1016/j.est.2024.110780
https://doi.org/10.1016/j.est.2024.110780
http://crossmark.crossref.org/dialog/?doi=10.1016/j.est.2024.110780&domain=pdf


Journal of Energy Storage 84 (2024) 110780D. Chen and X. Zhou
Nomenclature

𝐶𝐴𝐿𝐶𝐸 Center for Advanced Life Cycle Engineering
𝐸𝐶𝐿 Equivalent Circle Life
𝐸𝑂𝐿 End Of Life
𝑀𝐴𝐸 Mean Absolute Error
𝑀𝑜𝐸 Mixture of Experts
𝑀𝑆𝐸 Mean Square Error
𝑅𝐸 Relative Error
𝑅𝑀𝑆𝐸 Root Mean Square Error
𝑅𝑈𝐿 Remaining Useful Life
𝑆𝑂𝐻 State Of Health
�̂�𝑡 Predicted value of model
𝑐 Input sequence of capacity
𝐶𝑘 Battery capacity in the cycle 𝑘
𝐶𝑜 Initial capacity
𝑚 Size of sliding window
𝑛 Length of input sequence
𝑆𝑂𝐻𝑘 SOH in the cycle 𝑘
𝑥𝑐 Normalized sequence
𝑥𝑡 Input of the network
𝑦𝑡 Output of the network

time series analysis in battery systems has gained significant atten-
tion in recent years. To establish the connection between RUL and a
charge curve, Wu et al. [1] applied a Multi-Layer Perceptron (MLP)
to model both the terminal voltage curve and charge process. To
assess battery reliability, Ding et al. [40] integrated Convolutional
Neural Network (CNN) and wavelet packet decomposition by learning
long-term dependencies of capacity.

When making predictions for RUL, Recurrent Neural Network (RNN)
based networks have demonstrated their effectiveness in dealing with
sequential data. For example, to learn about changes in capacities
effectively, RNN is proposed to simulate the intricate nonlinear trend
associated with battery degradation [41–43]. To evaluate SOH, LSTM
is used to model nonlinear capacity curves [44–46]. Gate Recurrent
Unit (GRU), which is developed from LSTM, is also used often in
RUL prediction [47–49]. However, utilizing RNN-based networks for
modeling sequences recurrently results in significant time costs during
training and leads to performance degradation due to the challenges of
long-term dependencies [50–52].

In practical applications, raw data collected by sensors is always
full of noise [41,44,53]. Many existing methods directly feed raw
data into models without a denoising step, which seriously affects the
performance of the model [16,54]. In our model, a dropout mask is
applied to reduce noise by randomly deleting some noisy points in
sequences.

In modeling RUL, existing RNN-based models have some key dis-
advantages: limited parallelization, difficulty in capturing long-term
dependencies, and lack of attention mechanism. To solve the problem,
an attention mechanism is used to model the capacity fade trend.
Attention networks, with the power of parallelism and effective long-
range capture of dependencies, are designed to extract degradation
features of time series. The attention mechanism captures intricate
long-term dependencies among elements in a sequence regardless of
their distance and allocates more attention to significant features that
contain crucial degradation information.

Finally, to enhance overall modeling capability and improve accu-
racy, Mixture of Experts (MoE) is used to better learn representations.
MoE is a powerful technique that involves the integration of multiple
experts to enhance the capacity and performance of a machine learning
system [55,56]. By incorporating a diverse set of experts, a broader
2

range of patterns within the data is captured, leading to improved
overall performance and more comprehensive representations.

2. Proposed method

2.1. Problem setting

Li-ion batteries are widely applied in all kinds of electronic de-
vices. Their performance directly affects reliability and safety [57–59].
However, Li-ion batteries suffer from side reactions during operation,
leading to the aging of materials and capacity fading [4–7]. To ensure
safety, early prediction of RUL offers crucial insights into the main-
tenance and replacement requirements of the batteries [45,60,61]. By
accurately forecasting RUL, remaining lifespan is obtained to enable
proactive maintenance and timely replacements, which not only en-
hances safety, but also optimizes resource allocation and minimizes
potential risks associated with battery failures or malfunctions.

In RUL prediction, capacity is broadly regarded as the health indi-
cator of a battery to quantify degradation. A battery reaches its End Of
Life (EOL) threshold when its capacity is reduced to seventy or eighty
percent of the initial value [44,62]. RUL is defined as the amount
of time remaining before system health falls below a pre-determined
failure threshold [63–65], calculated as follows:

𝑁𝑅𝑈𝐿 = 𝑁𝐸𝑂𝐿 −𝑁𝐸𝐶𝐿, (1)

where 𝑁𝑅𝑈𝐿 denotes the cycle number of battery RUL; 𝑁𝐸𝑂𝐿 denotes
the cycle number when the battery reaches its EOL; and 𝑁𝐸𝐶𝐿 denotes
the Equivalent Circle Life (ECL).

SOH is an important indicator to reflect the performance of batter-
ies [44,66]. SOH in the cycle 𝑘 is described as follows:

𝑆𝑂𝐻𝑘 = 𝐶𝑘∕𝐶0 × 100%, (2)

where 𝐶𝑜 is the initial capacity, and 𝐶𝑘 is the battery capacity in the
cycle 𝑘.

2.2. Architecture

To predict RUL, we propose a novel neural network, AttMoE, which
combines attention networks with MoE, to capture capacity fade trends.
In AttMoE, attention is responsible for extracting features from the
capacity degradation; To provide RUL prediction, MoE combines the
different extracted features. AttMoE consists of four parts: inputs and
dropout, attention, MoE, and outputs. The framework is shown in
Fig. 1.

2.2.1. Input and dropout
First, to mitigate the impact of input data distribution changes on

neural networks, it is essential to normalize the data [67,68]. Data nor-
malization ensures that data is consistently represented across different
samples and minimizes the variations caused by differences in data
distribution. By normalizing input data, neural networks become more
robust and less sensitive to changes in data distribution, enabling them
to generalize better and make more reliable predictions. Normalization
also facilitates the convergence of the training and improves the overall
efficiency and effectiveness of the neural network model [69,70]. An
input sequence of capacity, 𝑐 = [𝑐1, 𝑐2,… , 𝑐𝑛], is mapped to (0, 1] by
𝑥𝑐 = 𝑐∕𝐶0.

Second, raw input data often contains much noise, particularly
during charge/discharge regeneration, which has a detrimental effect
on the accuracy of predictions. To ensure stability and robustness, it
is crucial to denoise the input data before feeding it into deep neural
networks. We use a dropout mask to process the normalized data, 𝑥𝑐 :

𝑥 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑥 ). (3)
𝑐
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Fig. 1. AttMoE network for RUL prediction consists of four parts: inputs and dropout, attention, MoE, and outputs. Dropout is designed for denoising; Attention is designed to
extract degradation features from time series; MoE is designed for improved overall performance and more comprehensive representations.
Third, a sliding window of size 𝑚, used to capture local patterns
and dependencies within the time series, 𝑥, divides the time series into
smaller segments:

𝑥
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, (4)

where 𝑥𝑡 and 𝑦𝑡 denote the input and output of the network, respec-
tively, and 𝑡 ∈ [1, 2,… , 𝑛 − 𝑚].

2.2.2. Attention mechanism
In extracting degradation features from time series, attention net-

works capture, in parallel, intricate long-term dependencies, without
being constrained by the spatial separation. A key advantage of at-
tention networks lies in their ability to allocate more attention to
the significant features that contain essential degradation information.
By dynamically adjusting attention weights, the attention mechanism
ensures that the most relevant and informative features receive height-
ened focus during the modeling process. This targeted attention alloca-
tion enables a network to effectively extract and emphasize the crucial
degradation-related patterns and characteristics within the time series.

By combining the power of parallel processing, efficient long-range
dependency capture, and selective attention allocation, attention net-
works offer a robust framework for extracting degradation features
from time series. We enhance the ability to discern and prioritize the
most important information, ultimately leading to improved perfor-
mance and accuracy in degradation feature extraction. Let 𝑄 = 𝑊𝑄𝑥𝑡,
𝐾 = 𝑊𝐾𝑥𝑡, and 𝑉 = 𝑊𝑉 𝑥𝑡 denote query, key, and value, respectively.
A Multi-head attention with ℎ heads and hidden size, 𝑑, is defined as
follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡[ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ]𝑊𝑂 , (5)

ℎ𝑒𝑎𝑑𝑖 = Attention
(

𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖

)

, (6)

Attention (𝑞, 𝑘, 𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑞𝑘𝑇
√

𝑑ℎ

)

𝑣, (7)

where 𝑑 = 𝑑∕ℎ is used to avoid generating extremely small gradients.
3

ℎ

2.2.3. Mixture of Experts
To enhance the capacity and performance of our model, MoE is used

to integrate multiple experts. Each expert focuses on a specific subset
or aspect of the data, allowing them to become proficient in capturing
specific patterns or features. The MoE framework dynamically assigns
weights to the experts, effectively blending their predictions to produce
a more accurate and comprehensive output. By leveraging the collective
knowledge and capabilities of multiple experts, MoE enables the model
to handle complex tasks, capture diverse patterns, and achieve superior
representations, leading to improved performance and robustness.

In an MoE model, the choice of the expert network depends on
factors such as the nature of the data, the complexity of the problem,
and the available resources. In our model, a fully connected layer is
used as an expert, 𝐸(𝑥). A gated network, 𝐺(𝑥), is used to decide which
expert to activate. The gated network consists of a full connection layer
and softmax. MoE is defined as follows:

𝑥𝑒 =
𝑚
∑

𝑖=1
𝐺 (𝑥)𝑖 𝐸𝑖 (𝑥) , (8)

where 𝑚 is the number of experts.
To ensure sparsity and balance, we follow [56] to use softmax of

gated network as 𝐺(𝑥) as follows: Following the technique in [56],
noisy Top-K gating is used to ensure sparsity and balance:

𝐺(𝑥) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐾𝑒𝑒𝑝𝑇 𝑜𝑝𝐾 (𝐻 (𝑥) , 𝑘)) , (9)
𝐻(𝑥)𝑖 =

(

𝑥 ⋅𝑊𝑔
)

𝑖 + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑁𝑜𝑟𝑚𝑎𝑙 () ⋅ 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠
((

𝑥 ⋅𝑊𝑛𝑜𝑖𝑠𝑒
)

𝑖

)

,

(10)

𝐾𝑒𝑒𝑝𝑇 𝑜𝑝𝐾 (𝑢, 𝑘)𝑖 =

{

𝑢𝑖, if 𝑢𝑖 is in the top 𝑘 elements of 𝑢.
−∞, otherwise.

(11)

where 𝑊𝑔 and 𝑊𝑛𝑜𝑖𝑠𝑒 are trainable weights.

2.2.4. Output
Finally, to predict unknown capacity, a fully connected layer is used

to map the feature of MoE to the value of capacity. To predict the
output, �̂�, prediction is defined as follows:

�̂� = 𝑓
(

𝑊𝑝𝑥𝑒 + 𝑏𝑝
)

, (12)

where 𝑊𝑝, 𝑏𝑝, and 𝑓 (⋅) denote weight, bias, and activation function of
the output layer, respectively.
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Fig. 2. Capacity degradation of both data sets: CALCE contains more noise than NASA.
2.3. Learning

To evaluate the loss, Mean Square Error (MSE), a widely adopted
metric for regression that calculates the average of the squared dif-
ferences between predicted and actual values, is selected as the loss
function. MSE is defined as follows:

 = 1
𝑠

𝑠
∑

𝑡=1

(

𝑦𝑡 − �̂�𝑡
)2 + 𝜆𝛺 (𝛩) , (13)

where 𝑠 denotes the number of predicted points; 𝜆 denotes a regulariza-
tion parameter; 𝛺 (⋅) denotes the regularization; 𝛩 denotes the learning
parameters of the model.

3. Experimental settings

3.1. Data sets

In our study, we performed experiments on two publicly available
data sets: CALCE and NASA. Both data sets provide valuable insights
into the behavior and performance of Li-ion batteries. The CALCE
data set was obtained from the Center for Advanced Life Cycle Engi-
neering (CALCE) at the University of Maryland1 [71–73]. The NASA
data set, accessible from the NASA Ames Research Center website,2
consists of records from four distinct Li-ion batteries [74,75]. Each bat-
tery undergoes a sequence of three operations: charging, discharging,
and impedance measurements. These operations are repeated multiple
times, generating a comprehensive data set for in-depth analysis of
battery behavior and performance. Capacity degradation of both data
sets are shown in Fig. 2.

3.2. Baseline approaches

To verify the effectiveness of our proposed model, we compared our
model with the following baseline approaches:

• MLP [1]. MLP is the most used in all kinds of tasks. With multiple
fully connected layers, MLP learns the temporal trend of a battery.
MLP has two key hyperparameters: learning rate and the number
of hidden layer. Learning rate is set at 0.01, and the number of
hidden layer is set at 2 and 4 for NASA and CALCE, respectively.

1 https://calce.umd.edu/data#CS2.
2 https://www.nasa.gov/intelligent-systems-division/discovery-and-

systems-health/pcoe/pcoe-data-set-repository.
4

• LSTM [45]. LSTM, which incorporates memory cells to retain
information from previous time steps in a recurrent manner,
learns contexts of the data and long-term dependencies of time
series. LSTM has two key hyperparameters: learning rate and the
number of hidden layer. Learning rate is set at 0.001, and the
number of hidden layer is set at 2 for both data sets.

• GRU [48]. GRU, an extension of LSTM, effectively and efficiently
captures and retains relevant information in the sequential data.
GRU has two key hyperparameters: learning rate and the number
of hidden layer. Learning rate is set at 0.001, and the number of
hidden layer is set at 2 for both data sets.

• Dual-LSTM [76]. Dual-LSTM uses two different LSTM cells to
learn both short and long-term dependencies of input signals to
predict RUL. Dual-LSTM has two key hyperparameters: learning
rate and the number of hidden layer. Learning rate is set at 0.001,
and the number of hidden layer is set at 2 for both data sets.

3.3. Evaluation metrics

To evaluate the performance of our model, we used three metrics:
Relative Error (RE), Mean Absolute Error (MAE), and Root Mean Square
Error (RMSE), defined as follows:

𝑅𝐸 =
|

|

𝑅𝑈𝐿𝑝𝑟𝑒𝑑 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒
|

|

𝑅𝑈𝐿𝑡𝑟𝑢𝑒

𝑀𝐴𝐸 = 1
𝑠

𝑛
∑

𝑡=1

‖

‖

𝑦𝑡 − 𝑦𝑡‖‖

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑠

𝑠
∑

𝑡=1

(

𝑦𝑡 − 𝑦𝑡
)2

where 𝑅𝑈𝐿𝑝𝑟𝑒𝑑 and 𝑅𝑈𝐿𝑡𝑟𝑢𝑒 denote the predicted and true RUL, re-
spectively. The smaller the values of RE, MAE, and RMSE, the better
the performance.

To assess the performance of all models, we used a leave-one-out
evaluation method over all data as follows: each iteration, select one
battery as a test sample and use the remaining batteries for training.
After five iterations of this procedure, we determined the average score
across all batteries.

3.4. Parameter settings

Beside learning rate and the number of hidden layer, all models
have a key hyperparameter, sampler size of input series. Sampler size
of an input series is set at approximately ten percent of the length of
the input sequence, i.e., 16 and 64 for NASA and CALCE, respectively.
Our model has four key hyperparameters: learning rate, the number
of heads and hidden size of attention model, and the number of

https://calce.umd.edu/data#CS2
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository
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Fig. 3. Effect of Mixture of Experts: compared AttMoE with its simplified version, AttMoE-MoE by varying the hidden size of the attention network.
Table 1
Overall performance of all methods in terms of RE, MAE, and RMSE. Best results are
shown in bold.

Data sets Metrics MLP LSTM GRU Dual-LSTM AttMoE

NASA
RE 0.3851 0.2648 0.3044 0.2557 0.2000
MAE 0.1379 0.0829 0.0806 0.0815 0.0760
RMSE 0.1541 0.0905 0.0921 0.0879 0.0872

CALCE
RE 0.4018 0.0902 0.1319 0.0885 0.0761
MAE 0.1557 0.0582 0.0671 0.0636 0.0577
RMSE 0.2038 0.0736 0.0946 0.0874 0.0794

experts of MoE. In our experiments, the learning rate is chosen from
{10−4, 10−3, 10−2}; The number of heads is chosen from {2, 4, 8}; Hidden
size is chosen from {32, 64, 128, 256}; The number of experts is chosen
from {4, 8, 16}. Adam optimizer is used to optimize all models. All
models are trained on our machine equipped with 128 GB RAM, and
one GeForce RTX 3090 GPU (24G).

4. Results and discussion

4.1. Overall performance

First, we conducted experiments to validate performance. The scores
for all methods are shown in Table 1. Best results are highlighted in
bold.

From the results presented in Table 1, the following can be con-
cluded: (1) AttMoE achieves the best results among all the methods,
indicating that it effectively extracts valuable temporal patterns from
capacity sequences in modeling RUL. (2) AttMoE consistently produces
accurate predictions, which is an especially significant improvement on
the NASA data set. This suggests that shorter sequences with limited
information are difficult for models to obtain temporal patterns. (3)
AttMoE and all RNN-based models exhibit better trend prediction than
MLP, indicating the importance of incorporating sequential information
for accurate RUL estimation. In AttMoE, the attention network simu-
lates the overall trend by considering the influence of past capacities
in the sequence. Therefore, AttMoE demonstrates the effectiveness of
extracting meaningful temporal features for accurately predicting the
RUL of a battery.
5

4.2. Effect of Mixture of Experts

Then, we studied the performance enhancement achieved through
the use of MoE. To evaluate this improvement, we compared AttMoE
with its simplified version, AttMoE-MoE, which does not incorporate a
MoE layer. We conducted the comparison by varying the hidden size
of the attention network and measuring the average scores. The results
are illustrated in Fig. 3.

From Fig. 3, it is seen that, for all evaluation metrics, in most cases,
AttMoE consistently outperformed its simplified version as the hidden
size of attention increased, indicating that MoE contributes to improved
performance in RUL prediction. Also, scores initially decrease and then
become stable as the hidden size varies. This pattern suggests that
AttMoE has a limited capacity to capture sufficient temporal informa-
tion when the hidden size is too small. When the value is large, AttMoE
becomes stable to learn enough temporal information by attention
networks. As a result, in our model, MoE exhibits improvement over
our method, leading to enhanced predictions.

4.3. Effect of dropout

Next, to assess the impact of the dropout mask, we conducted
experiments by comparing AttMoE with the simplified version without
dropout, AttMoE-dropout. In this experiment, we fixed the value of
dropout at 0.1. Table 2 shows the average scores and the improvement
of RE, MAE, and RMSE on the two data sets: relatively smooth NASA
and relatively noisy CALCE.

From the results shown in Table 2, it is seen that in all cases, AttMoE
performs better than AttMoE-dropout, indicating that the dropout mask
is effective in improving a performance of the model. Also, compared
with smooth NASA, noisy CALCE shows greater improvement, indi-
cating that dropout has a larger impact on a time series with more
noise and variation and more easily affects performance. These results
provide valuable insight for optimizing the use of dropout and ensuring
the robustness and effectiveness in noise reduction of data collected by
sensors.

To examine further the denoising function of dropout, we added
Gaussian noise to the raw data for sensitivity analysis. In this experi-
ment, we selected a percentage from 5% to 35% in intervals of 5% and
introduced noise to the selected percentage across all raw data. The

scores obtained for RMSE are shown in Fig. 4.
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Fig. 4. Effect of dropout: sensitivity analysis by introducing noise to the selected percentage across all raw data.
Fig. 5. Time cost (seconds) on two data sets.
Table 2
Effect of dropout: fixed the value of dropout at 0.1 to compare AttMoE with the
simplified version without dropout, AttMoE-dropout.

Data sets Metrics AttMoE-dropout AttMoE Improvement

NASA
RE 0.2120 0.2000 6.00%
MAE 0.0775 0.0760 1.94%
RMSE 0.0885 0.0872 1.47%

CALCE
RE 0.0821 0.0761 7.31%
MAE 0.0612 0.0577 5.72%
RMSE 0.0836 0.0794 5.02%

From Fig. 4, it is seen that, with an increase of the proportion of
noisy data, our model performs worse, indicating noisy data negatively
impacts model performance. Consequently, noisy data limits or even
damages the ability of a model to learn. On both data sets, in most
cases, AttMoE generally outperforms AttMoE-dropout, which indicates
the effectiveness of the dropout mask to enhance the performance of
our model. Dropout mask is a reasonable solution to reduce noise by
promoting model robustness and generalization.

4.4. Time cost

Finally, we conducted a study to analyze the time required to train
different models using two datasets (See Fig. 5). From the results
shown in Fig. 5, it is evident that, compared with our model, RNN-
based models (LSTM, GRU, and Dual-LSTM) require significantly more
time for training. This observation can be attributed to the fact that
RNN-based networks, which handle sequences in a recurrent manner,
6

result in higher time costs during training and inference. Using an
attention network, AttMoE enhances the training efficiency of neural
networks, thereby enabling it our model to capture sequential patterns
effectively. In summary, our study concludes that with the application
of an attention network, our model learning features in parallel are
more suitable for predicting the RUL of a battery.

5. Conclusion

We proposed a novel network framework, AttMoE, for RUL pre-
diction. In AttMoE, a dropout mask was applied to clear raw data
by randomly removing capacities. To model the trend of capacity, an
attention mechanism was used to extract features from the capacity
degradation of batteries. Then, a MoE was applied to combine the
different extracted features for better results. The experimental results
demonstrate the improvement of up to 10%–20% achieved by our
proposed model in terms of RE.

Although the proposed method has shown promising results, there
are still many aspects that can be studied further. First, our model
trained mainly on two data sets, leads to a limited ability for a wider
application. By considering wider range of data sets, we aim to im-
prove the accuracy and robustness of the RUL estimation for batteries.
Also, the behavior of batteries is highly influenced by various factors,
including temperature and current. By investigating the RUL estimation
under different operating conditions, we aim to gain a comprehensive
understanding of how these factors affect the remaining service life of
batteries, which will enable us to develop more reliable and adaptable
models for predicting RUL.
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