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a b s t r a c t

Although, widely applied deep learning models show promising performance in recommender systems,
little effort has been devoted to exploring ranking learning in recommender systems. It is important to
generate a high quality ranking list for recommender systems, whose ultimate goal is to recommend
a ranked list of items for users. Also, the latent features learned from Matrix Factorization (MF)
based methods do not take into consideration any deep interactions between the latent features;
therefore, they are insufficient to capture user–item latent structures. To address these problems,
we propose a novel model, DeepRank, which uses neural networks to improve personalized ranking
quality for Collaborative Filtering (CF). This is a general architecture that can not only be easily
extended to further research and applications, but also be simplified for pair-wise learning to rank.
Finally, we perform extensive experiments on three data sets. Results demonstrate that our proposed
models significantly outperform the state-of-the-art approaches. Our projects are available at: https:
//github.com/XiuzeZhou/deeprank.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems have been successfully applied to many
ields, such as e-commerce, music, and news. These systems
odel users’ preferences and predict the best-suited services or
roducts for users to help them discover useful information from
plethora of options [1–4]. In practice, recommender systems
im at recommending items that users may be interested in a
anking list. Therefore, the effects from ranking-oriented methods
re more suitable than the accuracy performance from rating
rediction methods for recommender systems [5,6].
To achieve a better quality of recommender systems and im-

rove their ranking performance, various approaches have been
roposed. For example, Rendle et al. [7] proposed a Bayesian
anking framework, which compares ordered pairs of items to de-
ide which is preferred over another in the recommendation list.
ark et al. [8] adopted some external information, such as user
rofiles and item contents, to solve the cold-start problem for
air-wise preference regression. Shi et al. [9] proposed a method,
istRank-MF, which combined a list-wise ranking method with
atrix Factorization (MF) for Collaborative Filtering (CF). How-
ver, one major limitation of those traditional solutions is that

The code (and data) in this article has been certified as Reproducible
by Code Ocean: https://help.codeocean.com/en/articles/1120151-code-ocean-s-
verification-process-for-computational-reproducibility. More information on the
Reproducibility Badge Initiative is available at www.elsevier.com/locate/knosys.
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they are unable to fully capture complex structures and deeper
information from user–item interactions.

Recently, all kinds of deep learning models have achieved re-
markable success in various fields, such as Computer Vision (CV),
speech recognition, and Natural Language Processing (NLP). These
deep learning models are also widely applied to recommender
systems to improve the quality of recommendation. For example,
Kim et al. [10] applied Convolutional Neural Networks (CNN)
to reviews to obtain contextual information and then combined
it with MF for recommendation. Wang et al. [11] presented a
collaborative deep learning method, which uses a Stacked De-
noising Auto-encoder (SDA) to obtain information from reviews
to alleviate the data sparse problem of CF. McAuley et al. [12]
used the latent features learned from images by neural networks
for the style and appearance of products to catch visual rela-
tionships between the products. However, these methods have
some shortcomings. First, they cannot be applied to fields with
little or no additional information, such as textual and image
information [13]. Second, capturing and processing that auxiliary
data requires extensive time and effort.

Although many methods based on MF have achieved good
performance on recommendation, they cannot effectively learn
user and item representations, which leads them to have poor
ability to capture complicated and deeper information about the
interaction between users and items. To solve this problem, and
inspired by the great success of deep learning methods applied
to ranking learning, we propose DeepRank, a list-wise ranking
method with neural networks. Point-wise methods, rather than
focusing on the personalized ranking of a set of items, focus only
on predicting an accurate rating value of an item. In practice,
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sers tend to pay more attention to the ranking order of an
tem than to its accurate ratings. For example, when wanting to
ee a movie online, a user often cares less about its rating and
hooses the movie at the top of the recommended list. Rather
han predicting a rating, the goal of DeepRank is to use predicted
cores to rank the position of an item.
Then, we reduce our model from top-n list-wise to a simpler

tructure: top-one list-wise, and then to the simplest structure:
pair-wise learning method, which is one of the most popular

anking-oriented methods in recommender systems. Pair-wise
ethods, in which each user is represented as a set of pair-wise
references over items, help users understand their preferences
ore than do point-wise methods [14,15].
Finally, the users’ preference features and characteristic fea-

ures of the items are not directly related. Therefore, to further
mprove the generation performance of our model, we set the
atent features of users and items at different sized dimensions. In
ost recommendation approaches, the interaction between user

atent features and item latent features is used to predict the
ating or ranking score [16,17]. But, the difference in the number
f latent features between them is rarely taken into account.
o the best of our knowledge, this is the first work that aims
t setting the number of latent features for users and items at
ifferent values.
We demonstrate that our proposed DeepRank has several

ttractive advantages:

(1) When using DeepRank to make predictions, it achieves
better ranking performance. To the best of our knowledge,
this is the first list-wise work based on neural network to
rank learning;

(2) It has a simple and flexible structure, which can be simpli-
fied from top-n list-wise to top-one list-wise and pair-wise
ranking learning for efficiency;

(3) This is the first time the effect of setting the number of
latent features for users and items at different values has
been investigated.

The rest of the paper is organized as follows: Section 2 briefly
eviews the background and some related work. Section 3
resents our proposed models in detail. Section 4 describes ex-
erimental results for several data sets to show the performance
f our models. Section 5 gives the conclusion and provides future
irections.

. Related work

In this section, we briefly introduce some background infor-
ation and related works. First, we introduce some ranking-
riented approaches and deep learning models for recommen-
ations. Then, we introduce ListRank-MF, which inspired us to
ropose our method.

.1. Ranking-oriented methods

MF is one of the most effective methods to deal with various
ecommendations [18]. The key idea of MF is to learn a latent
eature with low dimension to represent users and items. Many
F approaches focus on prediction accuracy, but a low prediction
rror cannot guarantee a high quality of recommendation [9,19].
hus, many ranking-oriented MF methods have been proposed
or top-n tasks. For example, Weimer et al. [20], instead of rat-
ng, developed MF by minimizing a convex upper bound of the
ormalized Discounted Cumulative Gain (NDCG) loss for optimiz-
ng ranking. Wu et al. [21] designed a list-wise method, which
aximizes the likelihood of a permutation model for building
se-specific ranking.
 a

2

Although those methods perform well, they encounter a criti-
cal problem: they lack nonlinear and complicated representations
about users and items [22–24]. Traditional MF methods consider
only the linear interaction between users and items, without ex-
ploring the nonlinear and more complicated interaction between
them.

In recent years, deep learning models have been widely and
successfully applied to CV and NLP [25]. Because deep learning
models have a powerful ability to learn complicated and non-
linear representations by their hidden layers, many researchers
resort to deep learning models to develop recommender sys-
tems [26]. For example, He et al. [16] transformed traditional
MF to neural MF (NeuMF), which uses a neural network ar-
chitecture to obtain latent features and achieves state-of-the-
art performance. Wu et al. [5], by integrating user-specific bias
into a Denoising Auto-Encoder (DAE) to obtain latent properties
of items, proposed an improved method: Collaborative Denois-
ing Auto-Encoder (CDAE). Zhang et al. [27] proposed a model,
DeepCF, which uses deep neural networks to for implicit user–
item coupling learning.

Although many deep learning models have been proposed for
recommendation, little effort has been devoted to explore the
ranking learning in recommender systems. Pair-wise and list-
wise methods are the most important ranking methods in the
field of machine learning. Pair-wise methods generate a personal-
ized recommendation list for users and build the users’ pair-wise
preference between items [6,13,28]. And pair-wise methods cap-
ture users’ preferences according to their pair-wise behaviors,
where a set of preferences for each pair of items is used to
represent each user [1]. For example, Burges et al. [29] pro-
posed RankNet, a pair-wise method with neural networks which
calculates the probability about user’s pair-wise preferences. Ren-
dle et al. [7] proposed Bayesian Personalized Ranking (BPR), the
most popular method to deal with pair-wise ranking for implicit
feedback.

However, methods based on pair-wise have two major prob-
lems: (1) They consider only the relative order of two items, not
the position of the items in the recommended list. The items at
the top of the recommended list are more important than those at
the bottom. If the items at the top are misjudged, the ranking cost
is significantly higher than for the items at the bottom. (2) The
number of relevant items varies greatly among different users.
After being converted into item pairs, some users have hundreds
of corresponding item pairs; whereas, others have only dozens of
corresponding item pairs, which makes it difficult to evaluate the
performance of the models.

2.2. ListRank-MF

To alleviate the problems caused by pair-wise approaches,
many list-wise approaches proposed. We introduce a traditional
ranking-oriented method, the list-wise learning to rank with MF
(ListRank-MF), which is the most relevant to our model. To obtain
top-one probability, Shi et al. [9] proposed ListRank-MF, a list-
wise probabilistic MF method that optimizes the cross entropy
between the distribution of the observed and predicted ratings.

ListRank-MF seeks to maximize the top-one probability of
items in a user’s ranking list. The function about top-one prob-
ability proposed by Cao et al. in [30], and has showed a good
performance for ranking. The top-one probability that an item,
i, rated by user u in his list, lu, is defined as follows:

lu (rui) =
g(rui)∑K
k=1 g(ruk)

, (1)

where rui denotes the rating of item i given by user u; K denotes
he number of items in the list lu, i.e. the length of lu; g(·) denotes
monotonically increasing and strictly positive function.
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Then, ListRank-MF uses cross-entropy to calculate the top-one
probability in observed ratings. The loss function of ListRank-
MF, which measures the distance between the true list and the
predicted list from the ranking model, is defined as follows:

L(p, q) =

K∑
i=1

Plu (rui) logPlu
(
f
(
pT
uqi

))
+

λ

2
(∥p∥2

F + ∥q∥2
F ), (2)

where N and M denote the number of users and items in data,
respectively; λ denotes a regularization parameter; ∥ · ∥

2
F denotes

the Fibonacci-norm; p and q denote the latent features, which
represent users and items, respectively; and pu and qi represent
the feature vector of user u and item i, respectively; f (·) is a
logistic function, whose purpose is to bound the range of pT

uqi,
defined as follows:

f (x) =
1

1 + exp(−x)
. (3)

But ListRank-MF has two major problems: First, it is modeled
on the traditional MF method, which uses the most common
way, the inner product, to model the interaction between users
and items. This way prevents ListRank-MF from obtaining the
nonlinear representation. Second, it only maximizes the top-one
rather than top-K probability of items in a user’s ranking list,
which loses a lot of ranking information.

3. Methods

In this section, we introduce our proposed model: DeepRank,
which is a top-n list-wise model for implicit feedback. First, we
discuss the problem definition and the notations used throughout
the paper. Then, we introduce our model in detail. Finally, we
show that our model can be simplified to a top-one list-wise, and
further to a pair-wise method for ranking.

3.1. Problem definition and notations

Given a user–item rating matrix, R, with N users and M items,
n interaction matrix, Y , is defined as follows:

yui =

{
1, if rui > 0
0, else , (4)

where yui ∈ Y , and rui ∈ R denotes the rating of item i given by
user u.

The main goal of DeepRank is to predict the unrated order of
items based on their final scores. The objective function is defined
as follows:

L = f (y, ŷ) + λΩ(Θ), (5)

where f (·) is the loss function of the model; y and ŷ are the true
and the predicted labels of instances, respectively; Ω(Θ) is the
egularization used to reduce over-fitting.

.2. Neural networks for ranking

We focus on ranking learning for top-n recommendation per-
ormance, which is more meaningful for real recommender sys-
ems. To elaborate on the DeepRank model, we employ a deep
earning framework for list-wise learning for ranking. The graph-
cal representation of our proposed model is shown in Fig. 1.
ur model consists of four layers: input, embedding, hidden, and
redictive.

nput and Embedding Layers. A fully connected layer projects
ach sparse feature to a dense vector representation. The function
f the embedding layer in a neural network is to convert users
nd items to low-dimensional space and use dense vectors to
3

Fig. 1. Network Architecture for DeepRank.

represent them. The preference features of users and attributes of
items are not directly related; therefore, it makes more sense that
their embedding should have dimensions of different sizes. As far
as we know, this is the first time that the embedding of users and
items has been set to different sized dimensions to improve the
generalization performance of neural networks.

Embedding layer maps the sparse features to dense features,
the embedding vectors from lookup-tables, defined as follows:

pu = flookup(u), (6)

q.
i = flookup(i), (7)

where pu ∈ R1×du and q.
i ∈ R1×di denote the latent representa-

tions (embedding vectors) of user u and item i, respectively, and
du and di denote their respective dimension sizes.

There are two reasons for setting different latent features for
users and items:

On the one hand, users and items are independent of each
other; therefore, their number of latent features is not necessarily
identical. In fact, as the number of items interacted with users
increases, so does interest, leading to an increase in the latent
features of the users. However, the attributes of the items are
relatively stable; thus, the number of their features does not
change significantly.

On the other hand, as is well-known, neural network train-
ing is time-consuming. Therefore, a sound strategy is to use a
pre-trained model to accelerate the training. Over time, users’
preferences change and many new interactions are generated,
resulting in a change in the number of the latent features of users.
Then, to speed up the training, rather than re-training the model
from random initialization, additional features are added to the
user embeddings of the pre-trained model.

In the list of K items for training, there are K+ positive in-
stances, and (K − K+) negative instances sampled from user u.
q+

i and q_
i denote the embeddings from positive and negative

instances, respectively.

Hidden Layers. Hidden layers are stacks of several fully con-
nected layers: the dense vectors of a user and K different items
from their embedding layers. The function of hidden layers is to
jointly encode user preferences and item attributes and capture
the nonlinear interactions between them. The Rectified Linear
Unit (ReLU), selected as the activation function for hidden layers,
demonstrates good performance in neural networks [31]. We

used only three hidden layers in DeepRank to not only simplify
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he model and reduce the difficulty of tuning parameters, but
lso achieve better generalization. Also, our model can be ex-
ended easily to deeper networks. With pu and q.

i as inputs, the
nteraction between them is defined as follows:

1 = f (pu, q
.
i), (8)

h2 = f1(wT
2h1 + b2), (9)

· · ·

hl = fl(wT
l hl−1 + bl), (10)

L = fL(wT
L hL−1 + bL). (11)

here f (·) denotes the interaction function between pu and q.
i ,

uch as concatenation, and inner product; hl, wl, and bl denote
he output, weights, and bias of hidden layer l, respectively; fl(·)
enotes the activation function; and L denotes the number of
idden layers.

redictive Layer. The function of the predictive layer is to map
he results from the final hidden layer to the probability, ŷui. Then
he prediction score is formulated as follows:

ˆui = softmax(xui), (12)

here xui denotes the output from the final hidden layer. We
hose the softmax function to map the results from the hidden
ayer to prediction. The probabilities ŷui that item i ranks at the
op-one for user u are defined as follows:

ˆui =
exui∑K
k=1 exuk

, (13)

here K denotes the number of items in the list lu.
In this paper, we focus on top-n model, and the probability of

tems in the user list is defined as:

lu (S(i1, i2, . . . , iK )) =

∏
j∈l+u

ŷuj
∏
k∈l−u

(1 − ŷuk), (14)

here S(i1, i2, . . . , iK ) denotes the set of all items in list lu; The
sets of items rated and unrated by user u in the recommended
list lu, are denoted by l+u and l−u , respectively.

Then, loss is evaluated by cross entropy, which used to mea-
sure the distribution between the true list and the predicted list
from the ranking model, is defined as follows:

f (y, ŷ) = −

N∑
u=1

⎛⎝∑
i∈l+u

logŷui +
∑
j∈l−u

log(1 − ŷuj)

⎞⎠ . (15)

here yui and ŷui denote the true and predicted probability that
n item, i, rated by the user, u, is in all items from the list,
espectively.

Finally, the regularization is defined as follows:

(Θ) =

L∑
l=1

∥wl∥
2
F +

N∑
u=1

∥pu∥
2
F +

M∑
i=1

∥qi∥
2
F . (16)

.3. Pair-wise DeepRank

Pair-wise methods model the relative ordering from each pair
f items to make predictions. Pair-wise methods assume that
user prefers observed rather than unobserved items. Thus,

or training, pair-wise methods construct the relationship be-
ween positive and negative instances. So, its objective function
s defined as follows:

(y, ŷ) = −

N∑⎛⎝∑
+

logŷui +
∑

−

log(1 − ŷuj)

⎞⎠ , (17)

u=1 i∈Iu j∈Iu

4

Fig. 2. Network Architecture for Pair-wise DeepRank.

where I+u and I−u denote the sets of items rated and unrated by
user u, respectively.

DeepRank of pair-wise optimizes ranking loss by modeling the
relative order of two items to calculate the probability of the pair-
wise preference of the users between their items. We set K=2 and
then optimize the objective function of DeepRank. The graphical
representation of pair-wise DeepRank is shown in Fig. 2.

3.4. Relations with other models

Relations with ListRank-MF. ListRank-MF is a well-known list-
wise method for recommendation, and it is most related to the
top-one list-wise DeepRank. After g(x) = ex is defined in Eq. (1),
Plu (rui) is viewed as the softmax function of the deep learning
models. To be consistent with our objective function, let y′

ui =

Plu (rui), and ŷ′

ui = Plu
(
f
(
pT
uqi

))
, the objective function, Eq. (2) is

ewritten as:

= −

N∑
u=1

∑
i∈I+u

y′

uilogŷ
′

ui + λΩ(Θ). (18)

rom Eq. (18), we find that different from our model, it models
nly on observed instances. But our model is trained on both
bserved and unobserved instances. If we train top-one list-wise
eepRank with only observed instances, we treat ListRank-MF as
special network of top-one list-wise DeepRank without hidden

ayers and sigmoid function as the activation function.
Compared with the ListRank-MF, our model has three major

dvantages:
(1) DeepRank models on top-n, rather than top-one ListRank-

F adopted, which learns more ranking information from list;
(2) DeepRank uses neural networks and nonlinear function

o learn latent features for users and items, rather than linear
ombination ListRank-MF adopted, which has a more powerful
epresentation than ListRank-MF;

(3) DeepRank is able to set the embedding size of users and
tems to different sized dimensions, rather than fixing them at a
ame value in ListRank-MF, which has stronger robustness and
eneralization.

elations with BPR. BPR is one of the most popular pair-wise
ethods for ranking, and it is most related to the pair-wise
eepRank model. Pair-wise methods predict the order of items
or each user by calculating scores for pair-wise preferences,
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asic information for data sets.
Data sets # of users # of items # of ratings

MovieLens100K 943 1,682 100,000
MovieLens1M 6,040 3,952 1,000,000
Yahoo! Movie 7,642 11,915 211,231

rather than predicting ratings. The objective function of BPR is
defined as following:

L =

N∑
u=1

∑
i∈I+u ,j∈I−u

−logσ (x̂uij) + λΩ(Θ), (19)

where x̂uij = pT
uqi −pT

uqj, and σ (x) = 1/(1+exp(−x)), the sigmoid
function.

After ŷuij = σ (x̂uij) = 1/(1 + exp(−x̂uij)) is defined in Eq. (19):

L =

N∑
u=1

∑
i∈I+u ,j∈I−u

−logŷuij + λΩ(Θ)

= −

N∑
u=1

⎛⎝∑
i∈I+u

logŷui +
∑
j∈I−u

log(1 − ŷuj)

⎞⎠ + λΩ(Θ).

(20)

Then, we find that the loss function of BPR is same as the
loss function of pair-wise DeepRank in Eq. (17). In DeepRank,
x̂uij = fMLP (pu, qi), and

ŷuij = softmax(x̂uij) =
exui

exui + exuj
=

1
1 + e−(xui−xuj)

=
1

1 + e−xuij

f the interaction function between pu and qi is the inner product,
nd no hidden layer in our model, we get x̂uij = pT

uqi, and ŷuij
s the sigmoid function, which are same in BPR. So, BPR can be
iewed as a special case of pair-wise DeepRank. And DeepRank is
more flexible architecture for pair-wise ranking.

. Experiments

First, we introduce the data sets used in our experiments.
hen, we present the baselines we compared with our model
nd the metrics we adopted for evaluation. Finally, we conduct
he experiments in detail and then answer the following research
uestions:

RQ1: How does DeepRank perform compared with other meth-
ds?

RQ2: How do the different dimension sizes between user and
tem embedding affect the performance of the model?

RQ3: How does the depth of the model affect DeepRank?

.1. Experimental setting

ata Sets. We conducted experiments on three public data sets:
oiveLens100K, MovieLens1M and Yahoo! Movie. MovieLens
ata sets (available from the MovieLens web site1) and the
ahoo! Movie data set (available from Yahoo! Labs2) are widely
sed in recommendation experiments. The basic information
data sets, number of ratings, number of users, number of items)

1 https://grouplens.org/datasets/movielens/.
2 https://webscope.sandbox.yahoo.com/.
5

is shown in Table 1. For all data sets, each user rated at least
twenty movies, and each item is rated at least by one user.

Baseline Approaches. Some baseline approaches, required to
quantitatively evaluate the performance of our proposed models,
are introduced briefly as follows:

-BPR: BPR [7], which learns to rank by optimizing a pair-wise loss
function to find the correct personalized ranking for all items, is
one of the most famous ranking methods for CF.

-ListRank-MF: ListRank-MF [9], which uses MF to calculate the
top-one probability of an unobserved item in the recommended
list of each user, is one of the most popular list-wise learning
methods in recommendation;

-NeuMF: NeuMF [16], which combines Multi-Layer Perception
(MLP) and Generalized Matrix Factorization (GMF) to learn the
interaction between users and items, is one of the state-of-the-
art CF methods. (The code for NeuMF is available online at: https:
//github.com/hexiangnan/neuarl_collaborative_filtering);

-DeepCF: DeepCF [27], which adds a new interaction layer for
users and items before being fed to MLP for collaborative ranking,
is a point-wise method for ranking learning.

Parameter Settings and Experimental Setup. We set the learn-
ing rate and regularization coefficient (λ) in all methods at 0.001
and 10−6, respectively; the number of latent features (k) in BPR
and ListRank-MF, embedding size in NeuMF and DeepCF at 16;
hidden layer size, epochs, and batch size in NeuMF, DeepCF, and
our models at 3, 50, and 512, respectively.

All experiments were conducted on a computer with 32GB
memory and 8 core Intel i7 3.0 GHz, and were implemented on
Tensorflow.

Evaluation Metrics. We regard the recommend issue as a ranking
issue. Then, we follow the leave-one-out evaluation, which is a
popular way to measure the ranking quality for recommendation,
used by Rendle et al. [6], He et al. [16], and Deng et al. [23].
For each user, we randomly sampled one rated item and 100
unrated items as testing data. Finally, to evaluate the relevant
performance of the top-n results for all methods, we adopted
NDCG and the Hit Ratio (HR). NDCG is sensitive to the relevance
of higher ranked items and assigns higher scores to correct rec-
ommendations at higher ranks in the list. NDCG@n and HR@n is
defined as follows:

DCG@n =

n∑
i=1

2ri − 1
log(1 + i)

DCG@n =
DCG@n
IDCG@n

ri =

{
1, if the item at position i is a hit item
0, other

here IDCG@n refers to the maximum possible value of DCG,
hich is used to normalize the NDCG@n value. The higher the
DCG@n value, the better the performance.
The HR@n score is defined as:

R@n =
hits
n

where hits denotes the time relevant items are in the top-n
list of each user; and n denotes the number of the top-n items
generated from methods. The higher the HR value, the better the
performance.

https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/
https://github.com/hexiangnan/neuarl_collaborative_filtering
https://github.com/hexiangnan/neuarl_collaborative_filtering
https://github.com/hexiangnan/neuarl_collaborative_filtering
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mpact of the length of the list on HR@10.
HR@10

K MovieLens100K MovieLens1M Yahoo! Movie

2 0.7402 0.7556 0.8672
5 0.7635 0.7568 0.8723
10 0.7667 0.7738 0.8765
15 0.7699 0.7745 0.8804

Table 3
Impact of the length of the list on NDCG@10.
NDCG@10

K MovieLens100K MovieLens1M Yahoo! Movie

2 0.4783 0.4898 0.7062
5 0.4902 0.5011 0.7104
10 0.4988 0.5148 0.7176
15 0.5099 0.5159 0.7275

4.2. Overall performance (RQ1)

To empirically evaluate DeepRank quantitatively, we perfor-
ed experiments on all data sets and compared the results with
aselines to show the performance of DeepRank. The perfor-
ance of all methods on data sets MovieLens100K, MovieLens1M
nd Yahoo! Movie is shown in Fig. 3.
As seen in Fig. 3, in general, the results of HR and NDCG are

consistent, and their performance is mimicked on different data
sets. As the number (n) of the top-n items increases, all methods
improve at ranking prediction. Our proposed method achieves
superior ranking performance. Also, DeepRank consistently out-
performs the state-of-the-art method, NeuMF, by a considerable
margin.

On the sparsest data set, Yahoo! Movie, DeepRank significantly
outperforms the baseline methods, indicating that the skills used
in our model are very effective and ensure the high performance
of the model. BPR and ListRank-MF methods achieve limited per-
formance across all data sets. Because they do not have complex
and deeper interaction in the data. NeuMF learns latent features
only from user–item rating data without considering any ranking
information about items. Therefore, some important information
about ranking is missing in the point-wise method, NeuMF .
Compared with NeuMF, ranking learning methods modeled on a
ranked items set are better for generating a personalized ranking
list of items for users.

The task for personalized recommendation is to provide users
with a ranked list of items. Point-wise methods (NeuMF and
DeepCF), trained only on user–item pairs to predict the proba-
bilities between users and items, do not consider any ranking
information about items, as pair-wise and list-wise methods do.
In contrast, our models (both pair-wise DeepRank and list-wise
DeepRank) rank learning methods and capture a user’s features
from his pair-wise or list-wise behavior on items, where a set of
ranked items is used to represent each user. Therefore, the ability
of our models to predict a personalized ranking performance is
more powerful than that of NeuMF and DeepCF.

Impact of the Length of the List. We also conduct extensive ex-
periments to investigate the impact of the length of the list (K ) for
ist-wise DeepRank. When K is equal to 2, it is equivalent to pair-
ise DeepRank, which is the most simple model of DeepRank.
he results are reported in Tables 2 and 3.
From Tables 2 and 3, first, we observe that more positions

nformation of items added to our model can further improve
ts performance. As the length of the list, K , increases, the values
f HR@10 and NDCG@10 of the model increase. On all data sets,
eepRank with the larger value of K achieves better results than
6

Table 4
Time costs of all methods.

l MovieLens100K MovieLens1M Yahoo! Movie

BPR 2 3 m 52 s 20 m 18 s 30 m 17 s
ListRank-MF 5 6 m 29 s 2 h 31 m 15 s 8 h 28 m 22 s
NeuMF 1 3 m 27 s 18 m 44 s 34 m 43 s
DeepCF 1 3 m 10 s 16 m 58 s 31 m 38 s
pair-wise DeepRank 2 2 m 3 s 13 m 12 s 19 m 2 s
list-wise DeepRank 5 5 m 18 s 1 h 56 m 39 s 6 h 27 m 6 s

Table 5
Impact of different dimension sizes of embedding.
du di MovieLens100K MovieLens1M

HR@10 NDCG@10 HR@10 NDCG@10

8 8 0.7169 0.4585 0.7393 0.4673
16 0.7699 0.4894 0.7530 0.4928

16 8 0.7381 0.4748 0.7593 0.4973
16 0.7635 0.4902 0.7568 0.5011

32 8 0.7423 0.4752 0.7548 0.4921
16 0.7466 0.4765 0.7524 0.4911

that with the smaller one. Second, when this value of K is less
han 5, the experimental results improve significantly. And when
he value of K is greater than 5, the improvement is slight. So, it
s an appropriate value when K equates to 5.

ime Cost. We conducted some experiments to compare all base-
ine approaches and show their efficiency. The training time for
ll models is shown in Table 4, where l is the length of items for
ne-time training.
From the results shown in Table 2, Table 3, and Table 4, the

ollowing is observed: (1) Both of our models require a longer
ime to make a prediction than do NeuMF and DeepCF. The
ain reason is DeepRank requires more time to generate ranked

ists of items from raw user–item interactions for training; but
euMF and DeepRank (point-wise methods) directly train on
ser–item pairs; (2) For the same data set, pair-wise DeepRank
pends less time than BPR. Pair-wise DeepRank and BPR are pair-
ise methods that require generating pair-wise interactions from
aw data. Although our model has more parameters, it achieves
ore stable convergence than the MF based method, BPR; (3)
ist-wise DeepRank and ListRank-MF are list-wise methods that
equire generating list instances from raw data. Therefore, for the
ame data set, they spend about the same amount of time. Our
odels achieve good performance, but they require more time to
enerate ranked lists of items from raw user–item interactions
or training. To sum up, pair-wise DeepRank can be chosen for
fficiency; for higher values of HR and NDCG, list-wise DeepRank
s a better choice.

.3. Effect of embedding size (RQ2)

Second, we performed some experiments to show the effect
f different dimension sizes of embedding for generalization. We
erify the effect of different dimension sizes of users and items
mbedding in our method.
High quality embedding is critical to the representation of

tems. We set the user embedding dimension size du = {8, 16,
32}, the item embedding dimension size di = {8, 16}, and the
length of list, K=5. Other parameters were set as same in previous
xperiments. Results are shown in Table 5.
From Table 5, we observe the following: First, compared with

he same dimension sizes of users and items, setting different
imension sizes for users and items further improves the perfor-
ance of the model. Second, when the dimension size of user
mbedding is small, a better result is achieved by setting the
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Fig. 3. Performance vs. the number (n) of the top-n items.
dimension size of item embedding to a larger value. When the
dimension size of user embedding is large, it is better to set
the dimension size of item embedding to a smaller value. Next,
comparing the performance on both data sets, on the larger data
set, MovieLens1M, the model must set higher dimension sizes of
embedding to obtain the better results. We believe that when
users have more rating information, it is better to have a larger
dimension size for their embedding. Finally, we conclude that
too many parameters cause the model to be over-fitting; too few
parameters cause the model to be under-fitting. By adjusting the
parameters, the risk of model over-fitting and under-fitting is
reduced, thereby improving the generalization of the model.

4.4. Effect of depth (RQ3)

Finally, to make full use of the capacity of list-wise DeepRank,
we explored the impact of the depth of hidden layers on ranking
performance. In this experiment, we set the sizes of the hidden
layers at [8], [16, 8], [32, 16, 8], [64, 32, 16, 8], and [128, 64,
32, 16, 8]. We set the dimensional sizes of users and items du,
di, to the same value: the size of the first hidden layer divided
by 2. Extensive experimentation was conducted to determine the
7

Table 6
Effect of the depth of hidden layers.
L MovieLens100K MovieLens1M

HR@10 NDCG@10 HR@10 NDCG@10

1 0.5557 0.3153 0.5626 0.3316
2 0.7136 0.4605 0.7255 0.4506
3 0.7635 0.4892 0.7568 0.5011
4 0.7738 0.5032 0.7579 0.4946
5 0.7702 0.4710 0.7528 0.4977

effect of the depth of hidden layers for DeepRank. We set the
following: number of hidden layers from 1 to 5, length of list,
K=5. Experimental results are shown in Table 6.

As seen in Table 6, more hidden layers further improve model
performance. As the number of hidden layers increases, the val-
ues of HR@10 and NDCG@10 of the model increase. On both
data sets, DeepRank, achieves better results with a larger number
of hidden layers than with a smaller number of hidden layers.
Also, when the number of hidden layers is fewer than three, the
performance of the model increases significantly.

To further compare the effect of the depth of hidden layers
on our model, we do some experiments to present the HR@10
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Fig. 4. Performance of the depth of hidden layers.
nd NDCG@10 performance in training on MovieLens100K data
et (see Fig. 4). From Fig. 4, as the epoch increases, the curve of
ighest number of hidden layers rises fastest in both HR@10 and
DCG@10 metrics. And list-wise DeepRank with larger value of
he number of hidden layers converges faster than the smaller
ne. More hidden layers further improve model performance, but
he values of HR@10 and NDCG@10 increase very slightly, even
own, when L is larger than three. Deep neural networks have a
trong representation power for modeling, however, too few pa-
ameters make the model under-fitting, and too many parameters
an easily lead model over-fitting. Therefore, we conclude that a
ensible number of hidden layers is indeed helpful for improving
he model.

. Conclusion

We proposed a novel method, DeepRank, for ranking recom-
ender systems. DeepRank, a promising tool for recommenda-

ion, provides new insight into CF models for ranking learning.
ompared with existing ranking-oriented methods, our method
chieves better performance and presents higher quality rec-
mmendations. In addition, our model has several outstanding
dvantages: (1) It captures user and item latent features in a com-
licated and nonlinear architecture; (2) Because it has a simple
nd flexible structure, our model is extended or simplified easily
o other scenarios.

In future work, we will explore several possible directions.
irst, to enrich our model for better quality, we will add some
dditional sources of information, such as textual information and
mage description information. Second, because of our interest
n online learning, we plan to apply our model to develop the
erformance of online CF. Finally, for further improvement, we
ill incorporate our model with other deep learning models.
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