
ORIGINAL ARTICLE

Knowledge-aware reasoning with self-supervised reinforcement
learning for explainable recommendation in MOOCs

Yuanguo Lin1,2 • Wei Zhang2 • Fan Lin2 • Wenhua Zeng2 • Xiuze Zhou3 • Pengcheng Wu4

Received: 21 October 2022 / Accepted: 6 November 2023 / Published online: 10 December 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Explainable recommendation is important but not yet explored in Massive Open Online Courses (MOOCs). Recently,

knowledge graph (KG) has achieved great success in explainable recommendations. However, the e-learning scenario has

some unique constraints, such as learners’ knowledge structure and course prerequisite requirements, leading the existing

KG-based recommendation methods to work poorly in MOOCs. To address these issues, we propose a novel explainable

recommendation model, namely Knowledge-aware Reasoning with self-supervised Reinforcement Learning (KRRL).

Specifically, to enhance the semantic representation and relation in the KG, a multi-level representation learning method

enriches the perceptual information of semantic interactions. Afterward, a self-supervised reinforcement learning method

effectively guides the path reasoning over the KG, to match the unique constraints in the e-learning scenario. We evaluate

the KRRL model on two real-world MOOCs datasets. The experimental results show that KRRL evidently outperforms

state-of-the-art baselines in terms of the recommendation accuracy and explainability.
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List of symbols
G A knowledge graph

ðe; r; e0Þ A triple of head entity, relation and tail entity

E The entity set

RG The relation set

u 2 U A user ID in the user set U

ct 2 C A course ID in the course corpus C

eu The observed interaction of a user

ci A target course

kn 2 K A course concept in the course concept set

ki The i-th concept embedding in a course

wj The j-th word embedding in a concept

Wt A weight of the edge according to ðet; rt; e0tÞ
S The state set

A The action set

P The state transition probability

R The reward function

st 2 S The state at time step t

at 2 A The action at time step t

Re;T The reward for the path finding

Rp;t The reward for the path discriminator

Dpðst; atÞ A path discriminator with respect to ðst; atÞ
Pu;ci A multi-hop path that connects u with ci via

t relations

PD
u;ci

An expert demonstration of the multi-hop path
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sDt The state in an expert path

aDt The action in an expert path

ph The actor policy

ah;t The action embedding in the actor network

ap;t The action embedding in path discriminator

Q/ The critic network

a/;t The action embedding in the critic network

k A factor to balance Re;T and Rp;t

b A decay factor of the action-value function

qt A target action-value in one step

1 Introduction

Currently, Massive Open Online Courses (MOOCs), a

popular way of e-learning, suffer from the issue of infor-

mation overload. As a notable solution arises in MOOC

platforms, the recommendation technologies [1, 2] help the

learners find some interesting or required courses by gen-

erating personalized recommendations. To ensure the

effectiveness and improve the accuracy of course recom-

mendations, many methods have been proposed [3, 4].

However, in reality, besides the accuracy, learners are

concerned with the rationality of the recommendation

process (i.e., the explainability of recommendation [5, 6]),

which is important but not yet explored [7].

In recent years, knowledge graph (KG) [8, 9] has been a

hot topic in recommender systems [10, 11]. The experi-

ments suggested that KGs not only improve recommen-

dation accuracy but also enhance the explainability of the

recommendation [12]. In this paper, we leverage multi-hop

path reasoning over a KG to interpret the recommendation

process and guide the specific learner to find feasible

learning paths. Existing KG-based recommendation meth-

ods, such as policy-guided path reasoning (PGPR) [11] and

ADversarial Actor-Critic (ADAC) [13] that utilize rein-

forcement learning (RL) [14, 15] to conduct explicit rea-

soning, make course recommendations poorly because the

e-learning environment usually suffers from the following

complex constraints.

• Course prerequisite requirements. In educational

applications such as curriculum planning and course

recommendation, prerequisite relations among courses

are important [16, 17]. Course sequence recommenda-

tions should include the prerequisite courses [2],

whether they are mandatory or not, as learners may

lack these course concepts (i.e., learning experience).

• Learner’s knowledge structure. It is well known that

learners’ knowledge structure evolves in the process of

learning [18]. In this case, the recommendation strategy

needs to take into account learners’ knowledge

structure. However, in reality, it is difficult to com-

pletely construct learners’ knowledge states.

To address the above challenges in course recommender

systems, we propose a unified framework, namely

Knowledge-aware Reasoning with self-supervised Rein-

forcement Learning (KRRL). The core idea is that the

learner’s knowledge structure consists of many series of

knowledge points, including course concepts. Meanwhile,

each course contains multiple concepts, and similar courses

usually share some of the same concepts. Thus, the

semantic representation of course concepts is good at

capturing learners’ knowledge levels. In addition, RL, with

a powerful ability of self-learning from interactions [14],

can automatically learn the latent relationship between

users and items [19]. Based on this case, we combine the

semantic perception and path reasoning over the KG,

conducted by the RL agent, to improve the accuracy and

explainability of course recommendation. Different from

the recommendation models in other scenarios, our

framework focuses on the knowledge-aware reasoning for

explainable recommendation in MOOCs. It not only con-

structs the explicit information and implicit feedback in the

learning process, but also recommends target courses that

match learners’ knowledge structure and course prerequi-

site requirements with self-supervised expert strategies.

The framework has two steps:

The first step is the effective construction of courses and

learners’ profiles in the KG. To this end, we introduce a

multi-level representation learning method to enhance the

semantic representation and relation of KG. Specifically, to

cast learners’ sequential preferences, a course-level repre-

sentation is utilized to model learners’ learning behavior.

Moreover, a concept-level representation is leveraged to

capture learners’ knowledge states as the attribute-level

information of the historical courses. In particular, multiple

similar courses can be associated with one or more of the

same concepts. Such connectivity may reveal the potential

factors in prerequisite relations among courses. For

example, the course Fundamentals of Big Data System and

its prerequisite course Operating Systems share some

concepts, such as ‘‘process control block’’, ‘‘memory

management’’, ‘‘file store’’, etc. This connectivity enriches

the perceptual information of semantic interactions in the

KG and contributes to the path reasoning of course

recommendation.

The second step is the implementation of the explain-

able recommendation in MOOCs. It needs an efficient way

to accomplish this task when labeled samples are often

limited in MOOCs (e.g., lack of explicit feedback). For this

purpose, we propose a self-supervised RL approach to

guide the path reasoning over the KG. Instead of only using

the smallest m-hop relation to seek the path over an
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unweighted graph [11, 13], inspired by [20], we adopt a

weighted operation with the similarity between entities

based on their relation to distinguish the strength of dif-

ferent paths. The weighted action paths can adjust the

policy to effectively infer learners’ preferences. Moreover,

an inverse reinforcement learning (IRL) algorithm [21] is

introduced to find rational demonstrations. It employs

expert demonstrations and reward signals to motivate the

policy to enable accurate recommendations. In this way,

the recommender agent can recommend courses that match

learners’ knowledge structure and interests, while

enhancing the reasoning ability.

In summary, we have made the following major

contributions:

• We present a novel framework (i.e., KRRL), which

conducts the knowledge-aware reasoning over the KG.

To the best of our knowledge, we are the first to propose

an explainable course recommendation model in

MOOCs.

• We propose a multi-level representation learning

method to enhance the semantic representation and

relation of KG, in which course-level representation

models learners’ learning behavior, while concept-level

representation captures learners’ knowledge states as

the attribute-level information of historical courses.

• To effectively recommend courses that match learners’

knowledge structure and interests, we propose a self-

supervised RL approach to guide the path reasoning.

The self-supervised module can help the recommender

agent distinguish the strength of different paths for

inferring learners’ preferences and find rational demon-

strations to enable accurate recommendations.

• Extensive experiments on two public MOOCs datasets

show that our KRRL framework not only improves the

recommendation accuracy but also achieves better

reasoning ability, compared with state-of-the-art

baselines.

The rest of this paper is organized as follows: In Sect. 2, we

review the related work. Section 3 introduces the definition

of the explainable recommendation task in MOOCs. Sec-

tion 4 elaborates the proposed KRRL framework. The

design of the simulation experiments is presented in Sect.

5. In Sect. 6, we analyze the experimental results. Finally,

Sect. 7 presents the conclusion and future work.

2 Related work

In this section, we provide a literature review of the related

work in the following research areas: (1) KG-based

explainable recommendation and (2) course recommender

systems.

2.1 KG-based explainable recommendation

Recent advances in KG have attracted much attention in

explainable recommendation [22–26]. Existing KG-based

explainable recommendation methods [27, 28] can be

classified into two types: embedding-based and path-based

models.

2.1.1 Embedding-based models

The embedding-based models can give explanations to

recommendations by learning entities and relations in the

KG [29–31]. For example, [32] developed a recommen-

dation reasoning paradigm named AnchorKG, which gen-

erates a compact anchor graph to enhance the latent

representation of each news article and performs the

knowledge reasoning via the interaction between different

anchor graphs. [33] proposed a KG-based method for

visualization recommendation, which achieves high-qual-

ity explainability without manual specifications of visual-

ization rules. [34] developed a knowledge-enhanced

recommendation model with the sequential preference

representation, in which knowledge base information is

incorporated into a key-value memory network to capture

attribute-level user preference. The model is inter-

pretable as it combines knowledge base information to

represent users’ preferences. [35] introduced self-generated

and embedding-based graphs into a new graph convolution

network, which can learn relationships between users or

items by ever-changing multiple graphs. Moreover, [36]

proposed a novel framework to provide personalized

explanations based on heterogeneous knowledge base

embeddings. Essentially, the above embedding-based

models are post hoc explanations, since the explanations

are generated by a soft matching algorithm after the target

items have been recommended. However, they can hardly

mine the perceptual information of semantic interactions in

the KG, which is crucial to reveal the potential factors in

relations among entities.

2.1.2 Path-based models

The path-based models learn the connectivity patterns

between two nodes in KG to make explainable deci-

sions [22, 37, 38]. For example, [39] employed a meta-

path-based entropy encoder and recurrent neural network

to improve the accuracy and explainability of recommen-

dations. [20] proposed a new recurrent neural network

(RNN) for explainable recommendation, which generates

path representations over KGs to infer users’ preferences.

[40] adopted a hierarchical self-attention network to learn

high-order semantic relevance from both entities and paths
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for more reasonable explanations. Most existing methods

generate inaccurate explanations since they only use static

KG. To address this issue, a temporal meta-path-guided

mechanism [41] is proposed to model dynamic user-item

evolutions on KG for better explainability. To model multi-

level user preferences, [42] proposed a novel KG-based

reasoning framework, in which a multi-level reasoning

path extraction approach can reveal user interests.

Besides, [43] developed a user-centric path reasoning

network to offer explainable recommendation, in which a

multi-view structure guides the search following both

sequence reasoning information and the user’s demand to

increase explanation diversity. [11] proposed a policy-

guided path reasoning (PGPR) method by using the RL

algorithm to perform the reasoning process over KGs. In

particular, the PGPR method integrates a soft reward

function, a multi-hop scoring approach, and a user-condi-

tional action pruning strategy to avoid enumerating all

possible paths. Furthermore, to fully explore perfect path

demonstrations for improving the recommendation accu-

racy and explainability, an adversarial Actor-Critic

framework [13] leverages path demonstrations with gen-

erative adversarial networks (GANs) to guide the path-

finding process.

Most of the existing path-based recommendation models

only take shorter paths between user-item pairs as better

finding paths. However, they cannot distinguish the

strengths of different paths, which may result in irrational

explanations. In our work, we propose a self-supervised RL

approach to guide the path reasoning over the KG. Instead

of using shorter paths between user–item pairs to find the

potential paths over an unweighted graph, we adopt a

weighted operation with the similarity between entities

based on their relation to distinguish the strength of dif-

ferent paths.

2.2 Course recommender systems

The current research on course recommender systems

usually provides corresponding solutions to deal with dif-

ferent issues [44–48]. For example, [49] was the first to

revise the user profiles by utilizing a hierarchical RL

algorithm for personalized course recommendation.

According to the characteristics of MOOC platforms, [50]

developed a distributed computation framework based on a

kind of improved apriori algorithm.

Traditional course recommendation models can be

divided into four types: ontology-based method [51] makes

recommendations by modeling related learners and cour-

ses. Sequence mining [18, 50] leverages the course

sequence for recommending the course to a given learner.

Content-based filtering [52] usually utilizes latent Dirich-

let allocation (LDA) to distinguish the features of courses

for recommendations. Collaborative filtering methods

[53–55] adopt courses of similar features or users with

similar preferences to recommend the target course. Due to

the sparsity of MOOCs data and the diversification of

learners’ interests, these models are difficult to meet

learners’ individual needs. To address these challenges in

course recommender systems, deep learning [56] has

become a prevailing approach investigated as follows.

Graph-based methods make full use of the data

structure by the entity relations in the graphs for course

recommendation. For instance, [57] proposed an item-set

embedding method to recommend top-N courses or learn-

ing paths to a specific student. In particular, they utilized a

graph to learn rich latent relations among courses, in which

students and courses are taken as the nodes, while enroll-

ment relationships are taken as edges weighted by grades.

[58] developed an automated construction method to model

course knowledge graphs, which can be assisted in the

learning path recommendation in MOOCs. Besides, a

hyperedge-based graph neural network [59] was proposed

to model the relationships among users, and the learned

sequence-level user embedding effectively assists in

MOOC recommendations. However, these graph-based

methods fail to explain the course recommendation results.

Hybrid techniques have received increasing attention

since course recommender systems often fall into require-

ments for complex scenarios [48, 60]. For example, [61]

combined the collaborative filtering and content-based fil-

tering methods according to multi-criteria for both user and

course information, to recommend the target courses rela-

ted to users’ academic level and their preferences. [62]

adopted a random walk-based neural network to capture

learners’ relational information and utilized a Bayesian

probabilistic tensor factorization to make course recom-

mendations. Moreover, based on the user profiles revised

by hierarchical RL algorithm [49, 4] developed a dynamic

attention network to track the changes of users’ interests in

sequential learning behaviors. Nevertheless, these hybrid

techniques do not simultaneously consider course prereq-

uisite requirements and learners’ knowledge structure.

Several previous works took into account prerequisites

in course recommender systems [2]. For instance, for

reducing the time to graduate for students, a forward-search

backward-induction method [18] combines course avail-

ability and prerequisite requirements to generate course

sequences. Moreover, [16] leveraged course prerequisite

relation and demographic profiles, as well as the user

preference to make course recommendations by collabo-

rative filtering method. Nevertheless, there are no solutions

to the explainable recommendation in MOOCs. Our work

fills the research gap by conducting knowledge-aware

reasoning over a KG, thereby improving the
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recommendation accuracy while achieving the explain-

ability of recommendations.

3 Problem formulation

The proposed framework combines the Actor-Critic algo-

rithm [63] and IRL algorithm [21] to conduct the knowl-

edge-aware reasoning for qualified candidate paths.

Generally, the explainable recommendation problem in

MOOCs can be formulated as follows.

Inputs. The KG is represented by

G ¼ fðe; r; e0Þ j e; e0 2 E; r 2 RGg, in which E is the entity

set1 and RG denotes the relation set. The triplet ðe; r; e0Þ
represents that the head entity e (e.g., Data Structure II)

and the tail entity e0 (e.g., Data Structure I) are connected

by the relation r (e.g., Prerequisite). Accordingly, the

inputs of the KG consist of a user set U, a course corpus C,

and the observed interactions:

• Each user is represented by the user ID u 2 U.

• Each course is denoted by the course ID ct 2 C. In

general, each course contains some concepts extracted

from the course concept set K ¼ fk1; � � � ; kng.
• The observed interaction eu contains all the entities

that the user u interacted with in the training dataset.

Outputs. Given a user u with his/her interactive data in

MOOCs, our model aims to output a top-N list of courses

(i.e., recommended candidates) Ci � C and generate cor-

responding reasoning path Pu;ci for each target course

ci 2 Ci. Pu;ci is a multi-hop path that connects u with ci via

t relations.

The main notations and related descriptions in this paper

are listed in Table 1.

4 The proposed model

Overview of KRRL Figure 1 illustrates a schematic over-

view of the proposed KRRL framework. In our framework,

there are two following steps to conduct knowledge-aware

reasoning over a KG:

In the first step, we introduce a multi-level representa-

tion learning method to enhance the semantic representa-

tion and relation of KG. More precisely, the course-level

representation models learners’ learning behavior by the

user-course interactions. The concept-level representation

captures learners’ knowledge states, i.e., a sequence of

course concepts fk1; � � � ; kig � K, which are considered as

the attribute-level information of historical courses. In this

way, latent relations among courses can be well learned.

In the second step, to effectively guide the path rea-

soning over the KG, we present a self-supervised RL

approach to recommend courses that match learners’

knowledge structure and interests. The recommender agent

starts from a learner and performs the multi-hop path rea-

soning over the KG and finally recommends suit-

able courses in the KG to the given learner. The self-

supervised module in this approach contains two functions:

the weighted action paths help the recommender agent

distinguish the strength of different paths to infer learners’

preferences. Moreover, an IRL-based path discriminator

obtains rational demonstrations to enable accurate

recommendations.

We utilize the Actor-Critic algorithm to train the KRRL

framework. It employs the reward signals (i.e., a reward

Re;t for the path finding and the other reward Rp;t for the

path discriminator) to motivate the policy to evaluate the

path reasoning for course recommendation.

In summary, the KRRL framework not only constructs

the explicit information (e.g., learner’s learning behavior)

and implicit feedback (e.g., learner’s knowledge level) in

the learning process, but also recommends target courses

with self-supervised expert strategies. In the following

sections, we elaborate on the multi-level representation

method used for the KG construction and the self-super-

vised RL approach applied to the path reasoning.

4.1 Multi-level representation learning

In course recommender systems, the effective construction

of both courses and learners’ profiles plays an important

role in accurate recommendations. Besides, it is nontrivial

to investigate prerequisite relations among courses to

capture learners’ knowledge levels, whereas the existing

course recommendation methods usually ignore the pre-

requisite relations or assume that they are missing in the

learner’s learning process on the corresponding MOOC

platform [16, 17]. However, learners may have studied the

prerequisite courses offline or on other platforms. In this

case, the learner’s knowledge structure fails to be con-

structed completely.

To address this issue, we propose a multi-level repre-

sentation learning method to enhance the semantic repre-

sentation and relation of KG, according to the semantic

space of different levels (i.e., course level and concept

level). Specifically, to capture learners’ sequential prefer-

ences for courses, we utilize a course-level representation

to model learners’ learning behavior from the interaction

sequence. In addition, we leverage a concept-level repre-

sentation to grasp learners’ knowledge states as the1 Note that the entity e can be the representation of each course,

concept, category, or learner in this paper.
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attribute-level information of historical courses. In this

way, our method integrates the sequential preference with

the attribute-level preference to better model the learner’s

profile, while mining the potential factors in prerequisite

relations among courses since similar courses usually share

some of the same concepts.

For a fair comparison, the information of KG embedding

is encoded via KG embedding techniques [36, 64], which is

also utilized in PGPR [11] and ADAC [13]. Specifically, it

learns a distributed vector ei 2 RdE for entity ei and a

vector r 2 RdE for relation r, where dE is the dimension of

the entity embedding. In this way, the learned embeddings

offer a general representation for entities and the corre-

sponding relations [34], which is conducive to the subse-

quent task (i.e., the path reasoning).

4.1.1 Course-level representation method

In the KG for course recommendation, let U denote a set of

learners and C denote a set of courses, given an observed

interaction eu, our task aims to seek a recommendation path

of the corresponding target course ci 2 Ci for a specific

learner u 2 U. To this end, by sorting the interaction

records in time sequence, the interaction sequence of the

learner u can be formed as fcu1; � � � ; cut ; � � � ; cutug, where cut
denotes the historical course c 2 C enrolled by the learner

u at time t, and tu is the number of historical courses that

the learner enrolled in. Accordingly, the course-level rep-

resentation method is used to encode the courses. That is,

the embedding vector cut 2 RdE for the historical course cut
is called historical course embedding, and the embedding

vector ci 2 RdE for the target course ci is called target

course embedding. Thus, to capture the learner’s sequential

preference for courses, we can use the course-level repre-

sentation to model the learner’s learning behavior by an

interaction sequence of the learner.

Since the course-level representation method is not

competent to understand and explain the hidden vector of

each course, it is difficult to learn the learner’s knowledge

states from the interaction sequence. Hence, we propose

the following concept-level representation to address this

challenge.

4.1.2 Concept-level representation method

It is widely known that the learner’s knowledge structure

consists of many series of knowledge points, including

course concepts (i.e., knowledge concepts) [65]. Besides,

each course contains multiple concepts, and there are often

the same concepts between similar courses. In this case, we

can leverage the semantic representation of course con-

cepts to capture the learner’s knowledge structure.

Table 1 Statistics of two

MOOC datasets
Datasets Users Interactions Courses categories Concepts Prerequisites

MOOCCourse 82,535 458,453 1302 23 27,173 411

MOOCCube 55,203 354,541 706 20 23,207 352

Fig. 1 The overview of our KRRL framework. The recommender agent conducts knowledge-aware reasoning to seek feasible candidate paths for

recommendations by interacting with the KG environment
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More precisely, the concept-level representation method

can capture the learner’s knowledge states by a sequence of

course concepts, i.e., fk1; . . .; kig � K, where ki denotes

the embedding vector of the course concept in a historical

course. It can be regarded as the attribute-level information

of the historical course. In general, the course concept

embedding consists of a sequence of word vectors. For-

mally, the course embedding can be structured by a set of

vector pairs according to a series of concept embeddings:

ct ¼ fðk;wÞ j ðki;wjÞ; n[ i[ 0; j[ 0g; ð1Þ

where ki denotes the embedding vector of the i-th concept

in the course embedding ct, n is the number of the course

concepts, and wj denotes the embedding vector of the j-th

word in the concept embedding ki.

Especially, similar to the mixed concept mapping

method [66], multiple similar courses can be associated

with one or more of the same concepts. Such connectivity

may reveal the potential factors in prerequisite relations

among courses. For example, the course Genetics and its

prerequisite course Cell Biology share some concepts, such

as ‘‘gene’’ and ‘‘cell’’. In this case, this semantic perception

matches the learner’s knowledge level and interest if the

learner enrolled in the course Genetics or Cell Biology.

Hence, our method enriches the perceptual information of

semantic interactions in the KG, which contributes to the

construction of the KG environment.

4.2 Self-supervised RL for reasoning

The second step in our framework is making explainable

recommendations for the learners. Since labeled samples

are often limited in MOOCs (e.g., lack of explicit feed-

back), it requires an efficient way to accomplish this task.

To this end, we propose a self-supervised RL approach to

guide the path reasoning over the KG represented by the

multi-level representation method. Specifically, starting

from a given learner in the observed interaction eu, the

recommender agent performs the multi-hop path reasoning

over the KG, thereby recommending suitable courses that

not only are desirable (i.e., personalization with learner’s

knowledge structure), but also satisfy constraints (e.g.,

prerequisite requirements). The self-supervised module in

this approach helps the recommender agent distinguish the

strength of different paths to infer learners’ preferences and

find rational demonstrations to achieve accurate

recommendations.

4.2.1 Markov decision process

We formulate the path reasoning problem as a Markov

decision process (MDP) [14]. The agent tries to

recommend suitable courses for a given learner by per-

forming the multi-hop path reasoning over the KG. For-

mally, the MDP can be defined by a 4-tuple

\S;A;P;R[ , where S denotes a set of states, A refers

to a set of actions, P is a state transition probability as

S �A� S, and R is the reward function.

State. The state st 2 S denotes the seek status of the

agent at time step t in the KG. Here, it is assumed that the

path-finding process encodes a m-hop relation among a

given learner u and each target course ci, i.e., the initial

state s0 ¼ u, and st ¼ ðu; r1; e1; � � � ; rt�1; et�1; rt; ciÞ. To

enhance the reasoning ability of the agent for better rec-

ommendation accuracy, we introduce course concepts as

auxiliary information to increase path connectivity.

Action. According to the state st, the agent conducts the

action at ¼ ðrtþ1; etþ1Þ following the policy to predict the

feasible outgoing edges of entity et except for the history

entities. It is necessary to control the size of the action

space since some entities have large out-degrees in the KG.

Thus, we utilize the weighted actions to retain the

promising edges, which adjusts the policy to infer learners’

preferences. It will be described in more detail in the next

subsection. Formally, the action space At can be defined

by:

At ¼ fðr; eÞ j ðe; r; e0Þ 2 G; e0 62 ET ; r 2 RGg; ð2Þ

where ET denotes the historical entity set.

Transition. In the KG, any state except for the initial

state is determined by history entity and relation. For all

s; s0; st 2 S, and a; at 2 A, the transition probability to the

next state is deterministic [32]:

Pðs0 j s; aÞ¼: Prfstþ1 ¼ s0 j st ¼ s; at ¼ ðrtþ1; etþ1Þg ¼ 1;

ð3Þ

where stþ1 denotes the state at time t þ 1.

Reward. The reward function R is the terminal reward,

which measures whether the agent generates a m-hop path

that starts from a given learner u and ends with a target

course ci. Formally, the reward for the path-finding Re;T at

the final time step T can be defined as follows:

Re;T ¼ IPðu;eT Þ ¼
1; if eT 2 Ci;

0; if eT 62 Ci;

�
ð4Þ

where IPðu;eT Þ denotes the indicator function of the path

finding [13], i.e., it is 1 when eT 2 Ci , whereas it is 0 when

eT 62 Ci.

4.2.2 The self-supervised module

As mentioned earlier, the self-supervised module in our

KRRL framework contains two functions: One is the

weighted action path, which helps the recommender agent
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distinguish the strength of different paths to infer learners’

preferences. The other is the IRL-based path discriminator,

which can obtain rational demonstrations to enable accu-

rate recommendations. The implementation details of the

two functions are elaborated as follows.

Weighted action path. Some studies assume that

shorter paths are more explainable for recommendations

and then adopt the smallest m-hop relation to reason the

path over an unweighted graph [11, 13]. However, we

argue that this method does not fully explore dependencies

between entities and holistic semantics of paths, which may

lead to irrational reasoning. As an alternative method

similar to [20], the weighted operation with the similarity

between entities based on their relation can learn depen-

dencies between entities and distinguish the strength of

different paths. Given any triplet ðet; rt; e0tÞ that represents

the head entity et and the tail entity e0t are connected by the

relation rt, the weight of each edge in the path can be

defined as follows:

Wtðet; rt; e0tÞ ¼ kV � V 0k2;V ¼ et þ rt;V
0 ¼ e0t; ð5Þ

where Wtðet; rt; e0tÞ denotes a weight of the edge with

respect to the triplet ðet; rt; e0tÞ, V is the vector that repre-

sents the sum of a vector of the head entity et and a vector

of its relation rt with a vector of the tail entity e0t, and V0 is

the vector of the tail entity e0t. When the weight value of

each edge in the path is smaller, the dependency between

two entities on the path is stronger, because the two entities

are closer in the vector space.

Based on the weighted action path, KRRL uses the

Dijkstra algorithm [67] to generate the shortest path

between a given learner u and a target course ci over the

weighted graph. The shortest path can be considered as a

demonstration. Thus, KRRL repeats this process for all

u 2 U and ci 2 C to obtain a set of expert demonstrations

PD
u;ci

:

PD
u;ci
¼

h
u �!minW1ðu;r1;e1Þ

e1 �!minW2ðe1;r2;e2Þ
e2. . . �!minWtðet ;rt ;ciÞ

ci

i
;

ð6Þ

where minWtðet; rt; ciÞ denotes the minimum weight of the

edge with respect to the triplet ðet; rt; ciÞ. In this way, the

recommender agent leverages the weighted action paths to

adjust the policy for inferring learners’ preferences effec-

tively, since the path weights can explore holistic seman-

tics of paths in the observed interactions.

IRL-based path discriminator. Inspired by the ADAC

model, we adopt generative adversarial imitation learn-

ing [21], a promising IRL algorithm, to obtain rational

demonstrations that conform to pre-defined meta-paths. It

employs expert demonstrations and reward signals to

motivate the policy to enable accurate recommendations.

In this way, the recommender agent can recommend

courses that match learners’ knowledge structure and

interests, while enhancing the reasoning ability.

Specifically, the actor cooperates with a path discrimi-

nator Dp in an adversarial way: The actor first generates the

paths, then the path discriminator distinguishes expert

demonstrations from the paths, while the actor attempts to

fool the path discriminator by imitating the expert

demonstrations. Formally, the path discriminator Dpðst; atÞ
with respect to the action at in state st at time t can be

formulated as follows [13].

Up ¼ tanhðst � ap;tÞ;

Dpðst; atÞ ¼ r
�
nTp tanhðWpUpÞ

�
;

ð7Þ

where st 2 Rds is the embedding vector of the state st,

ap;t 2 Rdd is the embedding vector of the action ap;t in the

path discriminator Dp, tanhð�Þ is the hyperbolic tangent

function, rð�Þ denotes the logistic sigmoid function, np 2
Rda and Wp 2 Rda�ðdsþddÞ are the parameters to be learned

with da as the dimension of the action embedding in the

actor network, ds as the dimension of the state embedding,

and dd as the dimension of the action embedding in the

path discriminator.

The discriminator is trained to calculate the probability

Dpðst; atÞ that the pair (ðst; atÞ) comes from the observed

demonstrations. Generally, it is can be achieved by mini-

mizing the following classification loss Lg:

Lg ¼ �
�
logDpðsDt ; aDt Þ þ logð1� Dpðst; atÞÞ

�
; ð8Þ

where the state sDt ¼ ðu; rD1 ; eD1 ; � � � ; rDt�1; e
D
t�1; r

D
t ; c

D
i Þ and

the action aDt ¼ ðrDtþ1; e
D
tþ1Þ are determined by an expert

path, which is randomly sampled from the observed

demonstrations PD
u;ci

.

When the actor generates the pair ðst; atÞ similar to that

of the observed demonstrations, it can obtain the reward

Rp;t for the path discriminator as follows [13]:

Rp;t ¼ logDpðst; atÞ � logð1� Dpðst; atÞÞ ð9Þ

To smoothly update the policy to find the promising paths

approximated the observed demonstrations, we define an

aggregated reward Rt by a linear combination of the

rewards for the path finding and the path discriminator.

Rt ¼ kRe;T þ ð1� kÞRp;t; ð10Þ

where k 2 ½0; 1� is a factor to balance the reward Re;T for

the path finding and the reward Rp;t for the path

discriminator.
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4.3 Optimization

Motivated by [13], to better guide the path reasoning and

estimate the action-value, we adopt the Actor-Critic algo-

rithm [63] to train our KRRL framework. The actor net-

work learns the path reasoning policy according to the

value function from the critic, and the critic network uti-

lizes the temporal difference method [68] to update the

action-value function in one step.

Actor. The actor network aims to learn a path reasoning

policy by calculating the probability distribution of each

action at 2 At in state st. It leverages both the weighted

action paths and expert path discriminators to effectively

guide the path reasoning. We train the actor network

phðat; stÞ with a fully connected neural network of multiple

layers [13]:

hh ¼ ReLU ðWh;sstÞ;

phðat; stÞ ¼
ah;t ReLU ðWh;ahhÞP
ai2At

ai ReLU ðWh;ahhÞ
;

ð11Þ

where ReLUð�Þ is served as the activation function, ah;t 2
Rda is the embedding vector of the action at in the actor

network, Wh;s 2 Rdh�ds and Wh;a 2 Rda�dh are the parame-

ters of the actor network to be learned with dh as the

dimension of the hidden layer, ds as the dimension of the

state embedding, and da as the dimension of the action

embedding.

Here, the actor network is optimized by the Policy

Gradient method [69]. For each sampled trajectory, the

gradients of JactorðhÞ can be computed by:

rJactorðhÞ / Q/ðst; atÞrhlogphðat; stÞ; ð12Þ

where the symbol / denotes ‘‘proportional to’’, and

Q/ðst; atÞ is the action-value function of the action at in

state st. Thus, we can learn the actor by minimizing the loss

function as follows [13]:

LactorðhÞ ¼ �Ea	ph

�
Q/ðst; aÞ

�
; ð13Þ

where Ea	 ph ½�� denotes the expected value of a variable

given by following the actor policy ph.
Critic. To accurately evaluate the contribution of each

action in the MDP environment, the critic network [70] is

used to estimate the action-value function. It can model the

rewards for both the path finding and path discriminator to

guide the actor effectively. The critic network Q/ calcu-

lates the action-value in state st:

h/ ¼ ReLU ðW/;sstÞ;

Q/ðst; atÞ ¼ a/;t ReLU ðW/;ah/Þ;
ð14Þ

where a/;t 2 Rda is the embedding vector of the action at in

the critic network, W/;s 2 Rdh�ds and W/;a 2 Rda�dh are the

parameters of the critic network to be learned [13].

The critic network is trained by the temporal difference

method, which updates a target qt in one step according to

the Bellman equation [71] as follows:

qt ¼ Rt þ Ea	ph

�
bQ/ðstþ1; aÞ

�
; ð15Þ

where b 2 ½0; 1� is a decay factor of the action-value

function Q/ðstþ1; aÞ. Thus, the critic can be learned by

minimizing the temporal difference error [14]:

Lcriticð/Þ ¼
�
Q/ðst; atÞ � qt

�2 ð16Þ

We jointly optimize the IRL-based path discriminator

Dpðst; atÞ, actor network ph, and critic network Q/ for the

KRRL framework by minimizing the total loss. As such,

the objective function of KRRL can be defined by:

Ltotal ¼ Lg þ LactorðhÞ þ Lcriticð/Þ ð17Þ

5 Experimental settings

In this section, we provide the description of datasets, the

baseline methods, evaluation metrics, and implementation

details of the proposed model. The experiments are

designed to answer our research questions as follows:

• RQ1 Does our proposed model outperform the state-of-

the-art baselines for course recommendation? How

much is the improvement in terms of recommendation

accuracy?

• RQ2 Do the multi-level representation method and self-

supervised RL approach improve the performance of

KRRL? Which major factors affect the effectiveness of

KRRL?

• RQ3 How is the recommendation performance of

KRRL when using different sampling sizes in path

reasoning? Which sample size can show better

performance?

• RQ4 How is the explainability of different path

reasoning methods? Which components contribute the

most to the explainability of KRRL?

• RQ5 Does our proposed model actually interpret the

process of course recommendation?

5.1 Datasets

The experiments are conducted on two real-world datasets,

i.e., MOOCCourse2 and MOOCCube collected from

2 http://moocdata.cn/data/course-recommendation.
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XuetangX.3 The MOOCCourse dataset consists of 1,302

courses from 23 categories, 27,173 concepts, 411 prereq-

uisites, 82,535 users who enrolled in more than 2 courses,

and 458,453 user-course interactions chosen from October

1, 2016, to March 31, 2018. The MOOCCube dataset

consists of 706 courses from 20 categories, 23,207 con-

cepts, 352 prerequisites, 55,203 users who enrolled in more

than 3 courses, and 354,541 user-course interactions cho-

sen from June 23, 2015, to November 13, 2019. Each

dataset contains user IDs, course IDs, course names, cate-

gories, course concepts, and prerequisite relations. Based

on the information for each dataset, we can construct the

knowledge graph that contains 4 types of entities (i.e., user,

course, course concept, and category) and 6 types of

relations (i.e., course�!Title course name, course �!Described by

course concept, course �!Belong to
category, course �!Prerequisite

course, user �!Enroll in
course, as well as user �!Enroll together

course). We randomly sample 70% of the user–item

interactions as the training set and take the rest 30% as the

test set. Details about the two datasets are shown in

Table 1.

5.2 Baseline methods

We compare our framework with the following competi-

tive recommendation models.

• BPR [72]: It is a pairwise ranking method to learn

latent embeddings of learners and courses for the top-

N recommendations.

• BPR-HFT [73]: It is a model that contains the hidden

factors and topics (HFT) based on topic distributions to

learn latent factors.

• LightGCN [74]: This recommendation model learns

the course and student embeddings by linearly propa-

gating them on the student-course interaction graph.

• RuleRec [37]: It adopts the KG to construct a rule-

guided model to make recommendations with the

induced rules.

• TP-GNN [75]: This personalized recommendation

model leverages graph neural network (GNN) and the

attention mechanism to make top-N recommendations

in MOOCs.

• PGPR [11]: This framework employs a policy-guided

method to perform the reasoning process over KGs.

• ADAC [13]: It leverages an adversarial Actor-Critic

method to guide the path-finding process over the KG.

5.3 Evaluation metrics

We evaluate the recommendation performance in terms of

four widely-used metrics, i.e., Recall, Precision, Hit Ratio

(HR), and Normalized Discounted Cumulative Gain

(NDCG). All the metrics are calculated according to the

top-10 recommended courses for every learner in the test

set.

The explainability of recommendations can be calcu-

lated by the Explainability Recall and Explainability Pre-

cision [76, 77]. Similar to [13], we adopt two evaluation

criteria by leveraging the course concepts of each historical

course. The basic idea is that a series of these course

concepts can form the ground-truth information, which

reveals the potential reason for recommending the target

course that matches learners’ knowledge structure and

interests. Thus, there is good explainability if a reasoning

path includes some entities mentioned in the ground-truth

information. In this way, the explainability can be evalu-

ated by matching the entities in the reasoning path with the

ground-truth words. Moreover, entities whose types are

course, course concept, or category are all mapped into the

ground-truth words with the string matching.

5.4 Implementation details

To fairly compare KRRL with baselines, our MDP envi-

ronment is implemented mainly according to [11] and [13].

Specifically, for the KG environment, the dimension of the

entity embedding dE is set to 100, the maximum length of

the reasoning path is set to 3. For the self-supervised RL

module, the maximum size of the pruned action space is set

to 250, the reward weight k is set to 0.008, the dimension

of the hidden layer dh is set to 512, the dimension of the

state embedding ds is set to 400, the dimension of the

action embedding da is set to 256, and the dimension of the

action embedding in the path discriminator dd is set to 256.

In the training process, all the parameters of the neural

networks are initialized with the Adam optimization, in

which the learning rate is set to 0.0001 and the batch size is

set to 512 for both datasets. In the path-reasoning process

for both datasets, the sampling size at different steps (i.e.,

m1, m2, m3) is set to 25, 5, 1, respectively.

6 Results and discussion

In this section, we discuss the experimental results,

including the recommendation comparison, the quality of

path reasoning, and the influence of sampling sizes on the

recommendation performance. We also conduct an ablation

analysis and a case study.
3 http://www.xuetangx.com.

4124 Neural Computing and Applications (2024) 36:4115–4132

123

http://www.xuetangx.com


6.1 Recommendation accuracy (RQ1)

Table 2 reports the performance comparison of different

course recommendation models. KRRL framework

achieves the best performance on both MOOCCourse and

MOOCCube datasets in terms of different evaluation

metrics. From the results in Table 2, we have the following

discussion.

• It is clear that our KRRL consistently outperforms all

other competitive models on both MOOCCourse and

MOOCCube datasets in terms of recall, precision, HR,

and NDCG. For example, compared with the ADAC

model, our KRRL obtains remarkable improvements by

16.6% in terms of Recall@10, 20.9% in terms of

Precision@10, 10.0% in terms of HR@10, and 18.2%

in terms of NDCG@10 on the MOOCCourse dataset,

while it improves the recommendation accuracy by

8.8% in terms of Recall@10, 7.3% in terms of

Precision@10, 4.4% in terms of HR@10, and 12.8%

in terms of NDCG@10 on the MOOCCube dataset.

These well demonstrate the effectiveness of our

proposed framework.

• It can be seen that traditional recommendation models

(i.e., BPR, BPR-HFT) are evidently outperformed by

our KRRL. One possible reason is that they fail to

effectively form learners’ profiles for making course

recommendations. Besides, the results of LightGCN are

slightly worse than RuleRec, and both of them perform

worse than TP-GNN on both datasets. The situation

shows that the introduction of more influence factors

may be helpful in improving the recommendation

strategies for graph-based models, since TP-GNN

leverages GNN and the attention mechanism to make

recommendations.

• We also notice that PGPR and ADAC are the state-of-

the-art baselines for course recommendations. This is

because they are the path-based models that leverage

the agent to conduct the path reasoning over KGs.

Meanwhile, RuleRec is obviously worse than PGPR

and ADAC since RuleRec only adopts KGs to make

course recommendations with the induced rules. It

indicates that the combination of RL and KG technol-

ogy can provide substantial benefits for course

recommendation.

• Among the KG-based models, it is clear that KRRL

significantly outperforms RuleRec, PGPR, and ADAC

on both datasets. The main reason is that our KRRL

leverages the multi-level representation and self-super-

vised RL approach to enhance the ability of path

reasoning. Thus, it can adjust the recommendation

strategies to make more accurate recommendations.

The results of KRRL are significantly better than

RuleRec. It demonstrates again the superiority of path

reasoning with RL and KG for course recommendation.

• All the comparison methods achieve better perfor-

mances on MOOCCourse than those on MOOCCube in

most cases. The potential reason is that the MOOC-

Course dataset contains many more entities and rela-

tions than those from the MOOCCube dataset, which

helps to construct richer associations to recommend

target courses. It suggests that we can enrich the KG

with more entities and relations to assist the recom-

mendation strategies, which contributes to the recom-

mendation accuracy, and thereby helps learners

improve their learning efficiency.

Table 2 The recommendation

accuracy of several comparison

methods on two MOOC datasets

in terms of Recall, Precision,

HR, and NDCG (%)

Methods MOOCCourse MOOCCube

Recall Precision HR NDCG Recall Precision HR NDCG

BPR 6.826 0.910 14.512 4.375 5.132 1.160 9.517 3.013

BPR-HFT 7.013 1.105 15.600 5.289 6.244 1.256 9.865 3.822

LightGCN 9.025 1.396 17.113 6.980 7.251 1.300 10.921 5.085

RuleRec 9.632 1.661 17.949 7.357 7.670 1.411 11.386 5.891

TP-GNN 12.578 1.898 19.244 8.530 9.491 1.757 15.635 6.602

PGPR 16.126 2.165 22.887 9.026 11.632 2.008 20.029 7.964

ADAC 18.310 2.507 23.913 10.269 12.016 2.292 20.817 8.336

KRRL-D 18.293 2.469 23.921 10.196 12.010 2.255 20.901 8.325

KRRL-M 18.449 2.739 24.002 10.282 12.126 2.385 21.198 8.713

KRRL-W 18.752 2.741 24.127 10.318 12.294 2.342 21.276 8.790

KRRL-P 20.847 2.912 25.765 11.643 12.537 2.424 21.408 9.150

KRRL 21.350 3.032 26.307 12.141 13.079 2.460 21.732 9.407

Imp ?16.6 ?20.9 ?10.0 ?18.2 ?8.8 ?7.3 ?4.4 ?12.8

The best results are highlighted in bold
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6.2 Ablation analysis (RQ2)

To investigate the significance of key components in

KRRL, we study how they affect the performance by

comparing the following four variants of KRRL.

• KRRL-D is the simplified version of KRRL that does

not take into account the IRL-based path discriminator.

• KRRL-M is the simplified version of KRRL that does

not introduce the multi-level representation method,

i.e., ignoring the concept-level representation.

• KRRL-W is the simplified version of KRRL that

ignores the weighted operation to distinguish the

strength of different paths.

• KRRL-P is the simplified version of KRRL that does

not introduce the course prerequisite relation into the

meta-paths.

From the results shown in Table 2, we have the following

observations:

• We can clearly observe that ignoring any one of all key

components will result in a performance drop. For

example, compared with KRRL-D, KRRL-M, KRRL-

W, and KRRL-P, KRRL improves 16.7%, 15.7%,

13.8%, and 2.4% in terms of Recall@10 on MOOC-

Course, and 8.9%, 7.8%, 6.4%, and 4.3% on MOOC-

Cube. Besides, KRRL achieves an improvement of

22.8%, 10.7%, 10.6%, and 4.1% over KRRL-D, KRRL-

M, KRRL-W, and KRRL-P in terms of Precision@10

on MOOCCourse, and 9.1%, 3.1%, 5.0%, and 1.5% on

MOOCCube. These results well demonstrate the supe-

riority of the KRRL framework and the effectiveness of

these key components.

• KRRL-D performs the worst among these variants of

KRRL on both datasets, in terms of different evaluation

metrics. This demonstrates that the IRL-based path

discriminator can leverage expert demonstrations and

reward signals to motivate the policy to enable accurate

recommendations. It also proves the indispensability of

the IRL-based path discriminator in our framework, that

is, without the consideration of the IRL-based path

discriminator, KRRL may generate a sub-optimal

recommendation result.

• The recommendation performance of KRRL-M is

worse than both KRRL and KRRL-P on MOOCCourse,

and it even performs worse than KRRL, KRRL-P, and

KRRL-W on MOOCCube in most cases. The results

verify the benefits of using the multi-level representa-

tion method to enhance the semantic representation and

relation of KG. Thus, our framework effectively

captures learners’ knowledge levels and then generates

more accurate recommendations for the learners.

• Both KRRL and KRRL-P perform better than KRRL-W

on both datasets. The comparisons show the superiority

of supplementing the task of course recommendation

with the weighted action paths, which distinguish the

strength of different paths to infer learners’ preferences

over the KG. Consequently, the agent can be well

guided to conduct the path reasoning over the KG,

thereby finding the target courses that meet learners’

preferences.

• KRRL-P is outperformed by KRRL, although it

achieves better performance than other variants of

KRRL. It indicates that incorporating the course

prerequisite relations can be conducive to improving

the recommendation strategies. This demonstrates that

course prerequisite requirements are important in the

course sequence recommendation, since learners often

consider these requirements in their curriculum plan-

ning and learning goals.

6.3 Sampling size in path reasoning (RQ3)

In this part, we study how is the recommendation perfor-

mance of KRRL when using different sampling sizes in

path reasoning. Table 3 reports the influence of different

sampling sizes in path reasoning on the recommendation

performance on both datasets. There are 8 different com-

binations of sampling sizes designed, and each tuple (m1,

m2, m3) denotes that the top mt actions at the t-th step are

sampled.

As shown in Table 3, in the combinations of (20, 3, 2),

(10, 4, 3), (15, 5, 2), and (10, 5, 3), KRRL performs better

than that in other combinations in most cases. For example,

on the MOOCCourse dataset, KRRL in the combination of

(10, 5, 3) has the best performance in terms of Recall,

Precision, HR, and NDCG. On the MOOCCube dataset,

KRRL in the combination of (15, 5, 2) performs the best in

terms of Recall; KRRL in the combination of (20, 3, 2) has

the best performance in terms of Precision and HR; and

KRRL in the combination of (20, 3, 2) performs the best in

terms of NDCG. These results indicate that the recom-

mendation performance of KRRL can be improved when

the sample size at the last step is large. The reason owes to

more recommended options if the sample size at the last

step is larger, which is conducive to selecting the optimal

action of path reasoning. To further verify this conclusion

for a fair comparison, the total number of sampling paths

(i.e., m1*m2*m3) is fixed to 120, such as (10, 12, 1) , (20, 3,

2), and (10, 4, 3). As shown in Table 3, in the combinations

of (20, 3, 2) and (10, 4, 3), KRRL significantly outperforms

that in the combination of (10, 12, 1), in terms of Recall,

Precision, HR, and NDCG on both datasets.
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In addition, it is clear that the total number of the sample

sizes at the first two steps, i.e., m1*m2, plays an important

role in path reasoning. For example, on the MOOCCourse

dataset, in the combinations of (10, 12, 1), (25, 5, 1), (20, 7,

1), and (30, 6, 1), the recommendation accuracy of KRRL

is gradually improved. There is a similar trend on the

MOOCCourse dataset, except for the combination of (25,

5, 1). The potential reason is that the policy tends to con-

verge to selecting the optimal action if the sample sizes at

the first two steps are large [11]. It is also noticed that the

comparisons of (15, 5, 2) and (20, 3, 2), (10, 5, 3) and (10,

4, 3) show similar trends in most cases.

Generally, the sampling size in path reasoning affects

the recommendation performance of KRRL to some extent.

Specifically, KRRL has more excellent performance when

the sample size at the last step is larger and performs better

in increasing the total number of the sample sizes at the

first two steps.

6.4 Quantitative analysis of explainability (RQ4)

One of the common measurements of explainability is to

evaluate the percentage of recommendations that can be

explained by the recommendation model [76]. Following

[78], we measure the explainability of the reasoning paths

by the Explainability Recall and Explainability Precision

according to the top-3 matched courses.

Figure 2 shows the explainability of different path-rea-

soning methods on both datasets in terms of Explainability

Recall and Explainability Precision. We only use ADAC as

the comparison method since it is the state-of-the-art

baseline for explainable recommendation. The explain-

ability of our KRRL significantly outperforms ADAC on

both MOOCCourse and MOOCCube datasets. Specifically,

compared with the ADAC model, KRRL obtains signifi-

cant improvements of 31.1% in terms of Explainability

Recall@3 and 15.9% in terms of Explainability Preci-

sion@3 on the MOOCCourse dataset, while it improves

8.5% in terms of Explainability Recall@3 and 8.6% in

terms of Explainability Precision@3 on the MOOCCube

dataset. Combined with the results from Table 2, we can

conclude that KRRL improves the recommendation accu-

racy while achieving better reasoning ability, compared

with the competitive baselines. Besides, all the comparison

methods achieve better explainability on MOOCCourse

than that on MOOCCube. It indicates that richer associa-

tions on KGs contribute to the path reasoning, since the

MOOCCourse dataset contains many more entities and

relations than those from the MOOCCube dataset. In this

case, the agent has more options to select the optimal

action of path reasoning.

As observed from these results, KRRL is consistently

superior to the other four variants on both datasets, in terms

of Explainability Recall and Explainability Precision. For

example, KRRL-D and KRRL-W are outperformed by the

other two variants of KRRL in most cases, indicating that

the self-supervised RL approach plays the most important

role in path reasoning. Compared with KRRL and KRRL-

P, KRRL-M has worse explainability, while it performs

worse than KRRL-W in terms of Explainability Precision

on the two datasets. This demonstrates that the multi-level

representation method is also conducive to path reasoning

over KGs. Additionally, the comparison of KRRL-P and

KRRL shows that with the consideration of course pre-

requisite relations, KRRL can achieve better reasoning

ability. This is because prerequisite relations among cour-

ses are helpful in capturing learners’ knowledge levels. The

experimental results further verify the effectiveness of

these key components in our KRRL.

6.5 Case study (RQ5)

To intuitively show how the KRRL framework interprets

the process of course recommendation, we conduct a case

study by offering three real-world MOOCs examples of the

path reasoning with KRRL. The results are illustrated in

Fig. 3.

In the first example (Case 1) from the MOOCCourse

dataset, a learner enrolled in a course Circuit Analysis

belonged to the category of Electronics, which also

Table 3 The recommendation

accuracy with different

sampling sizes in path reasoning

on two MOOC datasets in terms

of Recall, Precision, HR, and

NDCG (%)

Sizes MOOCCourse MOOCCube

Recall Precision HR NDCG Recall Precision HR NDCG

25, 5, 1 21.350 3.032 26.307 12.141 13.079 2.460 21.732 9.407

30, 6, 1 21.935 3.053 26.665 12.354 13.175 2.442 21.619 9.386

20, 7, 1 21.837 3.016 26.390 12.323 13.050 2.389 21.182 9.291

15, 5, 2 25.280 3.709 29.322 15.640 13.182 2.464 21.738 9.410

10, 5, 3 27.012 3.878 30.811 16.479 13.109 2.461 21.693 9.420

10, 4, 3 26.813 3.872 30.712 16.435 13.061 2.469 21.745 9.468

20, 3, 2 24.106 3.667 28.475 15.282 13.015 2.503 21.954 9.332

10, 12, 1 21.908 2.965 26.184 12.183 12.831 2.328 20.646 9.077
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includes the course Digital Integrated Circuit Analysis and

Design. Hence, KRRL generated the reasoning path by

using the demonstration in accord with a meta-path (i.e.,

user �!Enroll in
course �!Belong to

category  �Belong to
course).

Besides, it was also generated with another demonstration

(i.e., user �!Enroll in
course �!Described by

course concept  �Described by

course), since the two courses share some of the same

concepts, such as ‘‘combinational circuits’’ and ‘‘resis-

tance’’, which can be represented as several knowledge

points learned by the learner. This well explains why the

learner may like the target course Digital Integrated Cir-

cuit Analysis and Design.

In the second example (Case 2) from the MOOCCourse

dataset, both of learners A and B enrolled in the course

Web Development Technologies, while learner B also

enrolled in other courses. Thus, KRRL performs the path

reasoning according to the meta-path user �!Enroll in

course  �Enroll in
another user �!Enroll together

course. It can be

inferred that learner A may prefer the course Java Pro-

gramming that learner B enrolled in, although learner B

also enrolled in other courses, such as Data Structures (I)

and Career Exploration and Choice. This is because the

courses Java Programming and Web Development Tech-

nologies are closer in the semantic space, compared to the

other courses that learner B enrolled in. Therefore, based

on the weighted action path, the recommendation agent

recommends the target course Java Programming to lear-

ner A.

The third example (Case 3) comes from the MOOCCube

dataset. As shown in the bottom part of Fig. 3, a learner

Fig. 2 Comparison of

explainability on two MOOC

datasets in terms of

Explainability Recall and

Explainability Precision (%)
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enrolled in a course Introduction to Tumor Biology that has

a prerequisite course Genetics, which also has a prerequi-

site course Cell Biology. Thus, this reasoning path was

generated with the demonstration that conforms to the

meta-path user �!Enroll in
course �!Prerequisite

course �!Prerequisite

course. Meanwhile, the course Genetics contains two

concepts ‘‘gene’’ and ‘‘cell’’, which are also described in

the course Cell Biology. Hence, KRRL performs the path

reasoning according to another meta-path user �!Enroll in

course �!Described by
course concept  �Described by

course. Such

connectivity may reveal the potential factors in prerequisite

relations among courses and can be effectively identified

by the weighted operation to infer the learner’s preference.

Although Genetics has other prerequisite courses such as

Advanced Mathematics, they do not share any course

concepts. Therefore, KRRL recommended the target

course Cell Biology to this learner.

Observed from these course examples of the path rea-

soning, it can be concluded that our KRRL can recommend

suitable courses that not only are desirable (i.e., personal-

ization with learner’s knowledge structure) but also satisfy

constraints (e.g., prerequisite requirements).

7 Conclusion and future work

7.1 Summary of the results and implications

In this paper, we have presented an explainable recom-

mendation framework (KRRL), to address the issues rela-

ted to recommendation accuracy and explainability under

complex constraints in MOOCs.

We have discovered that the multi-level representation

method not only improves the recommendation accuracy

but also achieves good explainability. The main reason is

that it introduces course concepts as auxiliary information

to increase path connectivity. Thus, such connectivity

enriches the perceptual information of semantic interac-

tions in the KG and contributes to the path reasoning of

course recommendation.

The experimental results demonstrate the effectiveness

of the self-supervised RL approach. The effect of this

approach is twofold: One is the weighted action path that

infers learners’ preferences, which contributes to the rea-

soning ability. The other is the IRL-based path discrimi-

nator, which finds rational demonstrations to enable

accurate recommendations.

The empirical results also show that our proposed model

actually interprets the process of course recommendation.

Based on the conducted analysis of the case study, it

Fig. 3 Real cases of the path reasoning for course recommendation with our KRRL method
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indicates that KRRL is competent to conduct the knowl-

edge-aware reasoning for qualified candidate paths, which

match learners’ knowledge structure and course prerequi-

site requirements.

The theoretical and practical implications of our

research arise from the knowledge-aware reasoning method

and system implementation for explainable recommenda-

tion based on the KG. Firstly, the multi-level representation

learning method enhances the semantic representation and

relation of KG. In fact, this method is general and it may

also be applied to other KG-based recommendation mod-

els, since the existing KG-based recommendation models

should learn more underlying user-item relations to

improve the recommendation performance. Secondly, the

self-supervised RL approach effectively guides the path

reasoning over the KG. In particular, the weighted action

paths can adjust the policy to infer learners’ preferences.

Moreover, the IRL algorithm employs expert demonstra-

tions to enable accurate recommendations. We believe that

the self-supervised RL approach can become a powerful

tool to enhance the reasoning ability of KG-based recom-

mendation models, because it conducts the path reasoning

over the KG in a straightforward intelligent manner. The

empirical findings from the analysis of the experimental

results show that KRRL improves recommendation accu-

racy while achieving high-quality explainability.

7.2 Limitations and future work

There are still some limitations of the proposed framework

that should be solved in future work. First of all, our KRRL

framework only leverages the course concept and enrolled

behaviors to learn the course and learners’ representations.

However, we do not take into account other auxiliary

information, such as the course video and learners’ com-

ments. Besides, our method is limited to the explicit rea-

soning of MOOC recommendations, whereas the intrinsic

mechanism of the proposed framework should be focused

on.

For future work, we would like to investigate other

learners’ behaviors (e.g., the duration of each course video

watched by a learner) to mine the learner’s potential

preferences. Based on the information, it would be inter-

esting to recommend various contents such as knowledge

points and course videos to satisfy diverse requirements in

course recommender systems [16]. Moreover, we plan to

explore the interpretability of our KRRL framework,

leveraging the causal inference mechanism [79] to increase

its transparency.
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