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a b s t r a c t

To improve the recommendation accuracy and offer explanations for recommendations, Reinforcement
Learning (RL) has been applied to path reasoning over knowledge graphs. However, in recommendation
tasks, most existing RL methods learn the path-finding policy using only a short-term or single reward,
leading to a local optimum and losing some potential paths. To address these issues, we propose a
Self-Supervised Reinforcement Learning (SSRL) framework combined with dual-reward for knowledge-
aware recommendation reasoning over knowledge graphs. Then, we improve Actor–Critic algorithm by
using a dual-reward driven strategy, which combines short-term reward with long-term incremental
evaluation. The improved algorithm helps the policy guide path reasoning in an overall situation. In
addition, to find the most potential paths, in the improved Actor–Critic algorithm, a loss constraint of
each sample is used as a reinforced signal to update the gradients. With some improvements against
baselines, experimental results demonstrate the effectiveness of our framework.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Explainable recommendations aim to improve the effective-
ess, transparency, and trustworthiness of recommender sys-
ems [1–3]. Knowledge reasoning over Knowledge Graph (KG)
earns relations from large-scale data by reducing errors of il-
ogical random walk [4]. Therefore, recently, in recommender
ystems, KG-based explainable recommendation has attracted
uch attention [5–9]. KG-based methods for explainable rec-
mmendations are classified into two kinds: embedding-based
nd path-based. Embedding-based methods (e.g., TransH [10] and
ransR [11]) model entities and relations by the representation
istance. Path-based methods [7,12] perform path reasoning dur-
ng path-finding, and Gao et al. [13] proposed the concept of
eta-paths to reason over KGs. However, the approach has diffi-
ulty in dealing with multiple types of relationships and entities
n large real-world KGs, and thus cannot explore the relationships
etween disconnected entities. Most methods have a problem in
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that they are unable to perform explicit reasoning due to the lack
of some assisted methods to generate an effective path search
policy.

An effective solution is to apply Reinforcement Learning (RL)
[14,15] to perform path reasoning over a KG, where the agent
guides the path-finding in a Markov Decision Process (MDP) envi-
ronment. Different from ontological reasoning from rules [16,17],
RL which is heuristic and unsupervised, is possible to produce
more diverse results. Also, in finding paths of KG, RL learns
discriminative degrees of the rules [18]. In recent years, some
explainable recommendation methods combined with RL and KG
have been proposed. For example, Wang et al. [19], proposed to
enhance state representations with KG information considering
both exploitation and exploration and designed a composite re-
ward function to compute both sequences- and knowledge-level
rewards. Furthermore, to achieve faster convergence and better
interpretability, Zhao et al. [20] applied an Adversarial Actor–
Critic (ADAC) model with expert path demonstrations to find
interpretable reasoning paths.

However, the existing RL-based recommendation models fail
to find the most potential paths, since they learn the path-finding
policy according to the short-term or single reward. For instance,
Xian et al. [6], following a multi-hop scoring function and soft

reward strategy, first proposed the Policy-Guided Path Reasoning
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Fig. 1. Part of Valid path patterns in the results. Path 1 (red color): User
mention
−−−−→

Feature
described_by
←−−−−−− Item

noop
−−→ Item. Path 2 (blue color): User

purchase
−−−−→

Item
related_actions
−−−−−−−→ Related_entities

related_actions
←−−−−−−− Item. Existing models generally

prefer to search Path 1 by short-term or single reward. Our method aims to
transfer part of Path 1 to Path 2 to provide a convincing explanation.

(PGPR) model to sample reasoning paths for personalized recom-
mendations. However, PGPR has only one reward function and
lacks auxiliary rewards to drive the strategy to search for some
potential paths, which leads to the missing of some effective
paths when generating interpretable paths.

An example of an e-commerce recommendation scenario is
illustrated in Fig. 1. In Fig. 1, a user has two main paths: mention
and purchase. Most existing models may obtain more rewards
when they find the shorter path of the ‘‘mention’’ relation. How-
ever, when searching for the path that starts from the ‘‘mention’’
relation, these models ignore the evaluation ability of policy
networks. Specifically, in the training process, the policy is up-
dated according to the terminal reward, whereas the potential
evaluation ability of policy networks is not carried out. Hence,
in the process of reasoning, if the policy valuation of the state is
higher than the true value, these models do not learn path-finding
policy effectively and reduce the recommendation accuracy.

To address the above issues, we propose a Self-Supervised Re-
inforcement Learning (SSRL) framework, which performs
knowledge-aware recommendation reasoning over KGs. More
specifically, we propose an improved Actor–Critic algorithm with
a dual-reward driven strategy, which uses short-term reward
as the policy to search for relevant paths and uses long-term
incremental evaluation to infer future multi-hop paths with more
convincing explanations. In addition, to find and recommend the
most potential path for users, a reinforced loss constraint for each
sample is introduced as a self-supervised signal combined with RL
loss to jointly train the recommendation reasoning. In this way,
the SSRL framework provides convincing explanations.

The main contributions of this paper are summarized as fol-
lows:

(1) We propose a SSRL framework to automatically guide the
recommendation reasoning over KGs.

(2) We propose a dual-reward driven strategy for the Actor–
Critic algorithm, which combines short-term and long-term
knowledge-aware to perform path reasoning.

(3) We train the recommendation reasoning over KGs in a self-
supervised way, which combines a reinforced loss constraint and

RL loss for gradient updates.

2

2. Related work

2.1. Reinforcement learning

RL algorithms, learning optimal behaviors via trial-and-error
interactions with an environment [21], have been applied to var-
ious fields. For instance, recurrent RL is suitable to solve the prob-
lems of equity trading [22] and investment decision making [23].
Besides, some promising RL-based models were used in differ-
ent recommendation scenarios, including conversational recom-
mendations [24,25], sequential recommendations [26–28], and
explainable recommendations [3,29]. In addition, Deep Reinforce-
ment Learning (DRL) [30], such as Trust Region Policy Optimiza-
tion (TRPO) [31], Deep Q-Networks (DQN) [32], and Actor–Critic
algorithms [33], leverages deep learning methods to develop RL
for many different tasks.

The RL algorithms are classified into three groups for the ways
of acting, that is, value-function methods (e.g., Q-Learning [34]),
policy search approaches (e.g., REINFORCE algorithm [35]), and
Actor–Critic algorithms (e.g., Asynchronous Advantage Actor–
Critic [36]). The value-function methods employ the maximal
value to learn the optimal policy indirectly. These methods use
sampling strategies, leading to slow convergence [37,38].

In contrast to value-function methods, the policy-search ap-
proaches optimize the policy directly. In particular, the policy
gradient algorithm [35] improves the performance by tuning the
policy parameter. However, the policy-search approaches require
a lot of samples to ensure convergence.

Actor–Critic algorithm fully utilizes the advantages of pol-
icy search (actor) and value-function (critic) approaches: actor-
network updates the policy gradient of the value function in
terms of a critic’s feedback, and critic-network uses Temporal
Difference (TD) learning to update the value function in one
step. For example, Liu et al. [39] proposed an interactive recom-
mendation framework based on Actor–Critic algorithm, in which
the actor-network generates the recommendation scores for the
recommended items, and the critic network estimates a state–
action value, combining a novel state representation with the
generated action by the actor-network. Besides, Yu et al. [40]
proposed a recommendation tracker to track the users’ prefer-
ences based on a history of multi-modal matching rewards. The
policy is updated via the Actor–Critic algorithm, to recommend
the items with desired attributes to the users. The Actor–Critic
algorithms will address the issue of sampling efficiency with the
experience replay. Nevertheless, they often suffer from stability
when performing the value evaluation and the policy update
together.

To improve the Actor–Critic algorithm, researchers designed
many advanced models, including Soft Actor–Critic (SAC) [41],
Deep Deterministic Policy Gradient (DDPG) [42], and Shared Ex-
perience Actor–Critic (SEAC) [43]. Differing from most existing
Actor–Critic algorithms, we improve the Actor–Critic algorithm in
two aspects: (i) sequentially add through long-term incremental
evaluation; (ii) parameterize by both reinforced loss constraint
and RL loss in a self-supervised manner.

2.2. Knowledge graphs for recommendation

Recommender systems aim to help users to find what they
want from a huge number of items [44–47]. KG is an effective tool
for alleviating the problems of cold-start and data sparsity. Also,
KG-based methods have other important advantages in that they
make accurate and explainable recommendations. Existing KG-
based recommendation models are classified into two categories:
embedding-based and path-based approaches.

Embedding-based approaches, including TransE [48], TransH

[10], TransR [11], and TransD [49], learn entities and relations
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Fig. 2. SSRL framework for knowledge-aware recommendation reasoning.
a
T

n the KG and give related explanations of recommendations.
ath-based approaches, which use the connection patterns in
Gs to predict the link, are divided into two kinds: one adopts
he meta-structure (e.g., meta-path [50,51]) to learn the users’
references from similar users/items; the other encodes connec-
ion patterns between item–item or user–item pairs into vectors
o achieve better recommendation performance [52]. Neverthe-
ess, it is impossible to search for all paths in large-scale KGs
or recommendations. To tackle this problem, RL algorithms are
referred solutions.
Differing from the recommendation models based on tra-

itional machine learning methods [53–55] and deep learning
ethods [56–59], the explainable recommendation models with
G and RL [60] not only make high-quality recommendations but
lso provide explanations, which contribute to the effectiveness
nd trustworthiness of the recommender systems. For exam-
le, Park et al. [61] introduced a Sentiment-Aware Knowledge
raph (SAKG) to generate convincing explanations with senti-
ent analysis, and proposed a sentiment-aware policy learning
ethod to make recommendations and perform the reasoning
ver the SAKG. Besides, PGPR, an explainable recommendation
earning framework based on knowledge map and meta path,
ses the Actor–Critic algorithm to recommend actual paths in a
G [6]. In addition, to identify interpretable reasoning paths in the
G, ADAC model combines the Generative Adversarial Networks
GAN) and Actor–Critic algorithm [20].

The main challenge of the existing recommendation models
ith Actor–Critic algorithms is that they only consider the short-
erm reward in the current state and ignore the influence of
he action selected according to the Temporal Difference in-
rement in the subsequent state. Thus, such recommendation
odels may produce some pseudo-optimal paths, which not only

educes the recommendation accuracy but also weakens the per-
uasion in explaining the recommended path-finding. To solve
his challenge, we improve the Actor–Critic algorithm by using
dual-reward driven strategy, which combines both short-term
nd long-term knowledge-aware to perform path reasoning over
he KG, and thereby improves the recommendation accuracy and
xplainability.

. Proposed method

.1. SSRL framework

As shown in Fig. 2, the SSRL framework consists of two main
arts: a Markov Decision Process (MDP) environment of the KG
nd an improved Actor–Critic network. In recommendation tasks,
3

the actor-network is conducted to learn a recommendation path-
finding policy πΘ , on the action space At , in the state St ; the
critic network evaluates the value of the state and generates the
estimates of state-value function v̂(St ).

In this paper, we propose an improved Actor–Critic algo-
rithm with a dual-reward driven strategy to optimize the SSRL
framework. The algorithm, using a short-term reward to find the
relevant path and a long-term incremental evaluation to infer the
future multi-hop path, generates more convincing explanations.
First, the initial actor-network with the defined meta-path gen-
erates a finite recommended path. In a finite MDP, the current
state St , is fed to the critic network to generate the return Gt ,
nd the evaluation value v̂(St ), of the current state. Next, the
emporal Difference increment (Gt − v̂(St )), in the current state

is calculated. Finally, the Temporal Difference increments of all
subsequent states are accumulated as a long-term incremental
evaluation. In this way, the dual-reward driven strategy, com-
bining the short-term reward with the long-term incremental
evaluation, encourages the policy to make better recommen-
dations. During the model training, to find the most potential
path-finding, we also introduce a reinforced loss constraint to
supervise the reasoning.

3.2. Markov decision process environment

3.2.1. Knowledge graph
Generally, a special type of KG for the explainable recommen-

dation GR, with relation set R, is defined as follows:

G = {(ehead, r, etail) | ehead, etail ∈ E, r ∈ R} , (1)

where the triplet (ehead, r, etail) denotes the relation r , from the
head entity ehead, to the tail entity etail. GR contains a series of user
entities U , and a series of item entities I . Both U and I belong to
entity set E. We use relation r , to build the relationship between
these two entities. In this paper, the relation of user u, and item
i, is defined as ru,i ∈ R. Then, multi-hop paths are generated
to link these entities and build relationships in the knowledge
map. According to prior knowledge, meta paths for path-finding,
which are defined as a series of triple sets, correspond to a meta
explanation strategy.

3.2.2. Markov decision process
Markov Decision Process (MDP, as a deterministic MDP) con-

tains five basic elements: state, action, state transition probabil-
ity, discount factor, and reward.

State. At time t , the state St is defined as a triple (u, et , ht),
where u denotes a user in U; e represents the entity that the
t
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gent arrives after step t; and ht represents the history before
ime step t . We define the n-step history as the path sequence
of entities and relationships included in the past n-step, i.e.,
et−n, rt−n+1, . . . , et−1, rt}. Based on a user u, the initialization
tate is defined as follows:

0 = (u, u,∅), (2)

where ∅ denotes the empty set at the initialization state.

Action. In a KG, for the state st , entity et will execute an action at
to reach the next entity et+1. at = (et , rt+1) ∈ At , where et denotes
the current entity and rt+1 denotes the relationship between et
and et+1. A set of possible actions of et called its action space At ,
which is defined as follows:

At = {(r, e) | (et , r, e) ∈ GR, e /∈ {e0, . . . , et−1}} . (3)

Due to the randomness of RL strategies in the process of action
selection, it is difficult for RL models to balance the diversity and
accuracy of recommendation results. To alleviate this problem,
inspired by the solution of PGPR [6], we introduce a behavior
pruning strategy. To effectively retain the edge with high correla-
tion, the strategy gives the score of the entity correlation through
a multi-hop scoring function under the condition of the given
initial user u. The strategy considers that the higher the score of
the scoring function on an edge, the more likely the edge should
be selected.

State transition probability. In the Markov decision-making pro-
cess, given are the current state, St = (u, et , ht). After performing
action at = (rt+1, et+1), the agent reaches the next state. The state
transition probability is defined as follows:

P [St+1 = (u, et+1, ht+1) | St = (u, et , ht) , at = (rt+1, et+1)] (4)

Discount factor. To attain more rewards, the agent often consid-
ers the immediate reward and future timely rewards. In a given
period of MDP, the total return, Gt , is defined as follows:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · + γ T−t−1RT , (5)

where T denotes the termination status, and the discount factor,
γ , belongs to [0,1], i.e., the superposition of the timely current
reward and the discount value of the future reward.

Reward. In the PGPR, given the multi-hop scoring function, f (u, i),
a soft reward mechanism is used to calculate the terminal reward
RT :

RT =

{
max

(
0, f (u,eT )

maxi∈I f (u,i)

)
, if eT ∈ I

0, otherwise
(6)

here RT is normalized to the range of [0, 1]. A short-term or
ingle reward may fall into local optimality. Thus, to address this
ssue, we use a long-term incremental evaluation arising from
he integration of Temporal Difference (TD) increments in various
uture states, which is presented in the following section.

.3. Multi-hop scoring function

A multi-hop scoring function is used to prune the action space
nd calculate the value of the reward function. In the definition of
ulti-hop scoring function, we allow reverse edges in the paths
f KG.
Now we define a multi-hop scoring function f

(
e0, ek | r̃k,i

)
as

follows.

f
(
e0, ek | r̃k,i

)
=

⟨
e0 +

i∑
rs, ek +

k∑
rs

⟩
+ bek (7)
s=1 s=i+1

4

where r̃k,i belongs to a 1-reverse k-hop pattern, it can be pre-
sented as form of e0

r1
−→ · · ·

ri
−→ ei

ri+1
←−− ei+1

ri+2
←−− · · ·

rk
←− ek.

⟨·, ·⟩ is the dot product operation. e is the embedding vector of
entity and r is the embedding vector of relation, bek is the bias for
entity e. When k and i are assigned different values, r̃k,i represents
different meanings.

When k = 0, i = 0, the f
(
e0, ek | r̃k,i

)
represents the similarity

between two vectors.
When k = 1, i = 1, the f

(
e0, ek | r̃k,i

)
is the distance from the

head vector plus the relation vector to the tail vector. We can use
it to calculate timely rewards and action space pruning. When
calculating the timely rewards, for a directly connected entity
pair(ei, ei+1), if the relationship between the two entities changes,
the distance between the sum of the head entity node and the
relationship edge and the tail entity node will also change, so
the associated edge between the nodes is closely related to the
calculated reward value.

For k ≥ 1, 1 ≤ i ≤ k, the f
(
e0, ek | r̃k,i

)
is the similarity of

two entities based on a 1-reverse k-hop pattern. We can use it to
calculate terminal rewards. It can be seen from f

(
e0, ek | r̃k,i

)
that

the calculation of terminal rewards is related to the source node,
the terminal node and a series of relational edges in the process,
and these actions cover all the relationship types mentioned in
Fig. 6. When some relational edges change in the process, the
value of f

(
e0, ek | r̃k,i

)
will change.

3.4. Actor–critic networks

Actor network. This network aim to learn a path-finding pol-
icy, πθ , to calculate the probability distribution of each selected
action, at , in the current state, St , (πθ (St)). The input of the actor-
network is the action space and the state of the current node.
The output is the probability distribution of each action in the
action space. Next, the mask operation is used to delete an invalid
action; then the result is fed into softmax to generate the final
action probability distribution.

Critic network. The critic network is used to calculate the value
of critic neural network in the state, St . In the critic network,
the input is the current state, St , and the output is the value
evaluation of the state, v̂ (St).

3.4.1. Dual-reward driven strategy
Policy updating for most existing Actor–Critic based models

considers only the current state of the Temporal Difference incre-
ment and ignores the impact of the future state of the Temporal
Difference increment. The short-term reward, Gt , is a reward
without the feedback of Temporal Difference increment in each
future state. Actor–Critic networks, trained only by Gt , ignore
the impact of the current state selection on the subsequent state
and the corresponding Temporal Difference increment and easily
fall into local optimum, leading the agent to possibly choose the
suboptimal action at the beginning of path-finding.

To help the policy guide path reasoning in an overall situa-
tion, we propose an improved Actor–Critic algorithm. As shown
in Fig. 3, Dual_R: a dual-reward driven strategy, combining the
short-term reward, Gt , with long-term incremental evaluation,
TDLT . TDLT considers the feedback of Temporal Difference incre-
ment in each future state under the policy, πθ . Dual_R is defined
as follows:

Dual_R = Gt + TDLT (8)

TDLT =

T−1∑
i=t+1

(
Gi − v̂ (Si)

)
. (9)
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The object function is defined as follows:

∇Θ J(Θ) = Eπ

[
∇Θ logπΘ (S) (Dual_R− v̂(S))

]
, (10)

here the difference between Dual_R and v̂(S) is defined as the
dvantage value of the corresponding state in RL. The advantage
alue is used to express the D-value between the real reward
alue and the expected reward value obtained in the state. If the
umulative attenuation of the Dual_R value in the future state is
reater than the value of v̂(S), it indicates that the action selection
trategy corresponding to the current state is relatively high
uality and can be maintained. Instead, the policy needs to be
pdated. Thus, the advantage function value generated based on
he dual-reward mechanism can effectively reflect the influence
f current action selection on the future state trend.
In recommendation or path reasoning, the policy of dual-

eward driven strategy tries to ensure that the Temporal Differ-
nce increment of the current and future states is positive after
electing the action, thereby recommending the most potential
tems to users and generating more convincing reasoning paths.

.4.2. Reinforced loss constraint
To ensure the exploratory strategy of RL training, our model

as three loss functions: critic network, actor-network, and en-
ropy.

For the critic network, the input is the state, St , and the output
s the expected value of the corresponding income of the state,
ˆ (St). The loss function is defined as follows:

critic =

T−1∑
t=0

(
Dual_R− v̂(St )

)2 (11)

For the actor-network, given St , generates the model strategy,
πθ (St), which means selecting the probability value correspond-
ing to an action. To update the parameters of actor-network
adaptively, we add reinforced loss, Lr , as a constraint to the
etwork. The loss function is defined as follows:

r =

∑batch_size−1
i=0 e− log(πθ (St ))∗(Gt−v̂(St ))[i]−1

batch_size
, (12)

actor = − log(πθ (St)) ∗
(
Dual_R− v̂ (St)

)
+ Lr , (13)
5

where Lactor consists of two parts: the object function of action
alue and Lr . The former, based on the double reward mechanism,
s used to obtain the maximum value expectation generated by
he current action selection. And the reinforced loss Lr is used to
alculate the difference between the value evaluation of critic-
etwork and the value generated by the action. When the value
valuation of critic-network is lower than the actual value of
he action, it means that the action selection will bring more
alue than expected, and the Lr will drive the policy to choose
uch actions, on the contrary, it will reduce the selection of
uch actions. Therefore, the Lr can dynamically adjust the action
election policy of the Actor-network.
When training the RL network, a loss function of entropy,

(π ), is added to ensure that the search strategy of the agent is
xploratory as well as exploitative, so that the agent tries to select
ome new actions. The loss function is defined as:

entropy = max
πθ

H(π ) (14)

Then, the loss function of our model is defined as follows:

= Lactor + Lcritic + β ∗ Lentropy (15)

here β denotes a parameter to control the relative contribution
f the entropy loss.
Finally, the policy gradient ∇θ J(θ ) is defined as follows:

θ J(θ ) = Eπ

[
∇θ logπθ (St) (Dual_R− v̂(St ))

]
(16)

.5. Model training

Our SSRL trains the model by the improved Actor–Critic al-
orithm using a dual reward-driven strategy and the reinforced
oss constraint as a self-supervised signal. First, we initialize the
arameters of Actor–Critic network, define the meta path, and
reate the virtual environment of RL. Then, a recommended path
ith an episode length, T , is generated under the predefined
eta path. The state, St , at time t is taken as the input of the
ctor and critic networks. The output of the actor-network is the
valuation, v̂(St ), i.e., the expected value of the corresponding
ction sampling in state St . After learning the recommended path
ith episode length, T , we calculate the cumulative reward, G ,
t



W. Zhang, Y. Lin, Y. Liu et al. Applied Soft Computing 131 (2022) 109745

O

w
e
f
b
N
e
∇

h

4

4

4

d
l
B
l
t
T
o
s

Table 1
Statistics of two Amazon e-commerce data sets: Clothing and Beauty.
Data set Number of users Number of items Relation types Entity types Number of product per user

Clothing 39387 23033 8 5 7.08
Beauty 22363 12101 8 5 8.88
Algorithm 1 SSRL Framework Training Process

Input: actor-network: πθ (s), critic network: v̂( s), states: S, the learning rate: Lr, epoch: N, batch size: K, meta path, entity embedding,
relation embedding.
utput: πθ

initialize Actor–Critic network parameters, virtual environment of RL.
n← 0
for n to N do

generate a episode by πθ (s):S0, A0, R1, S1, A1, R2, · · · · · · ST−1, AT−1, RT
Gt ← 0
for t ← 0 to (T − 1) do

for i← (T − 1) to t do
Gt ← γGt + Rt
TDt = Gt − v̂( St)

end for
Dual_R =

∑T−1
t+1 TDt + Gt

v̂(St )← v̂(St )+ α
[
Dual_R− v̂(St )

]
Lcritic =

∑T−1
t=0

(
Dual_R− v̂(St )

)2
Lr =

∑batch_size−1
i=0 e− log(πθ (St ))∗(Gt−v̂(St ))[i]−1

batch_size
Lactor = − log (πθ (S)) ∗

(
Dual_R− v̂(St )

)
+ Lr

Lentropy = −H(πθ )
Totalloss = Lactor + Lcritic + β ∗ Lentropy

end for
∇θ J(θ ) = Eπ

[
∇θ logπθ (S) (Dual_R− v̂(S))

]
end for
return πθ
from each state to the end state and the corresponding Temporal
Difference increment (Gt − v̂(St )) for each state. In this way,
e design a new reward as follows: a long-term incremental
valuation based on the cumulative increment of Temporal Dif-
erence in the future state relative to the current state followed
y combining the short-term reward, GT , to update the policy.
ext, we update the loss function including critic loss, actor loss,
ntropy loss, and reinforced loss. Finally, the policy gradient,
θ J(θ ), is updated, The training time of RL policy is about six
ours, and the training is shown in Algorithm 1.

. Experiments

.1. Experiment setup

.1.1. Data sets
We performed experiments on two real-world e-commerce

ata sets: Amazon_beauty and Amazon_cloth, which were col-
ected from Amazon and available from Amazon Review Data.2

oth data sets consist of product reviews, meta information, and
inks. Each data set contains eight types of relations and five
ypes of entities. The statistics about the data sets are shown in
able 1. The descriptions of data types are shown in Table 2. In
ur experiments, the data set is divided into training and testing
ets in a ratio of 3:1.

2 https://nijianmo.github.io/amazon/.
6

4.1.2. Baseline methods
We compare SSRL with the following recommendation meth-

ods:

BPR [53] is a Bayesian pair-wise model to learn user interests.
Compared with BPR which only uses user–item interactions, SSRL
uses lots of auxiliary information. The results show the necessity
of auxiliary features in recommendations.

VBPR [54], visual Bayesian personalized ranking, combines BPR
and visual product knowledge. Compared with VBPR which uses
a little auxiliary information, SSRL uses a lot of auxiliary informa-
tion to show the necessity of the number of auxiliary features.

TransRec [56] first uses translation-based embedding for the
sequential recommendation and then maps user and project rep-
resentations to the shared embedded space. Both TransRec and
SSRL use the Embedding method, and the comparison of both
methods shows the effectiveness of RL or auxiliary information.

DeepCoNN [57] encodes users and products by using a convolu-
tional recommendation model for reviews. Both DeepCoNN and
SSRL use product review information, and the comparison of both
methods shows the effectiveness of RL or the amount of auxiliary
information.

CKE [55] learns user interests by integrating matrix factorization
and heterogeneous data. Both CKE and SSRL use abundant auxil-
iary information, and the comparison for both methods indicates
the effectiveness of RL combined with KG.

JRL [58], the state-of-the-art joint representation learning model,

uses multimodal information including image, text, and rating

https://nijianmo.github.io/amazon/
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Table 2
The descriptions of data types of two Amazon e-commerce data sets: Clothing
and Beauty.
Entities Description

User User in recommender system
Item Product to be recommended to users
Feature A product feature word from reviews
Brand Brand or manufacturer of the product
Category Category of the product

Relations Description

Purchase User
purchase
−−−−→ Item

Mention User
mention
−−−−→ Feature

Described_by Item
described_by
−−−−−−→ Feature

Belong_to Item
belong_to
−−−−→ Category

Produced_by Item
produced_by
−−−−−−→ Brand

Also_bought Item
also_bought
−−−−−−→ Item

Also_viewed Item
also_viewed
−−−−−−→ another Item

Bought_together Item
bought_together
−−−−−−−−→ another Item

to apply to the neural network. JRL using multi-modal informa-
tion representation achieves the accuracy results showing the
performance of RL.

LightGCN [59], a popular recommendation model based on GNNs,
xtends NGCF by removing feature transformation and nonlinear
ctivation, and achieves a trade-off between the performance and
fficiency. LightGCN is selected as a comparison algorithm to
how coverage.

GPR [6], an explainable recommendation learning framework
ased on knowledge map and meta path, uses Actor–Critic net-
orks to find and recommend paths. Both PGPR and SSRL are
nsupervised explainable recommendation algorithms, and their
esults reflect the effect of interpretability.

.1.3. Evaluation metrics

valuation metrics: Precision, Recall, Normalized Discounted Cu-
ulative Gain (NDCG), and Hit Ratio (HR) of top-10, are used

o evaluate recommendation performance. If hitu indicates the
umber of the right items in the list, all metrics are defined as
ollows:

recision@K =
1
m

m∑
u=1

hitu
K

, (17)

Recall@K =
1
m

m∑
u=1

hitu
Nu

, (18)

NDCG@K =
1

IDCG@K

K∑
i=1

2reli − 1
log2 (i+ 1)

, (19)

R@K =
∑m

u=1 hitu∑m
u=1 Nu

. (20)

here m denotes the number of users; Nu denotes the number
f items rated by user u; IDCG@K denotes the Top-K list of the
est recommendation results for a user; reli denotes the graded
elevance of the item ranked at position i in the recommendations
ist.

.1.4. Implementation details
The MDP environment construction of our model mainly refers

o the PGPR framework [6]. We leverage the policy of RL based
n Actor–Critic network to guide agents to search paths on KG.
or the presentations of all entities and relations of KG, the
7

mbedding size is set at 100. We train the embedding based on
he TransE model, the training epoch of embedding is set at 30.
n RL training, the maximum size of action space for any state
s set at 250. We prune the action space based on the multi-
op scoring function, and the rate of action pruning rate is set
t 0.5. The cumulative discount factor of reward is set at 0.99.
he actor–critic network is a two-layer network, the sizes of two-
ayer are 512 and 256, respectively. The loss function consists of
r , Lcritic , Lactor and Lentropy; Xavier initialization [62] is applied for
ur networkss; the training epoch is set at 50; the optimization
unction is Adam; the learning rate is 0.0001; the batch size
s 32. In the validation experiment, we used the experimental
esults of top-10 as the comparison of accuracy and top-5 as the
xplainable experimental comparison.
This experiment mainly leverages RL to achieve explainable

ecommendations on KG constructed from Amazon data sets. The
xperiment consists of three parts: representation learning, RL
raining, and validation. In the representation learning module,
ransE model is applied to learn the embeddings of eight relations
nd five entities in the Amazon data sets, which is applied to
he training of RL and the calculation of reward in downstream
asks. In the RL training phase, we train the RL framework based
n an actor–critic network, in which the value of the rewards is
alculated by the multi-hop scoring function. We use the dual-
eward mechanism to drive RL policy updates. After training, we
se the trained policy to search for the target items on the KG,
nd recommend the items that enable the RL to obtain the most
ewards to users as the items to be purchased.

.2. Performance comparison of recommendation

The performance of all models on two Amazon data sets is
ummarized in Table 3. On both data sets, the recommendation
erformance of SSRL is better than other baselines in terms of
DCG, HR, Precision, and Recall. For example, in terms of Recall,
SRL outperforms PGPR by 6.77% and 4.23% on the Clothing and
eauty data sets, respectively. It shows that both the quality of
he policy and the recommendation accuracy is improved. The
ain reason is that our model uses the dual-reward and the loss
onstraint as the reinforced signal to update the gradient, which
s conducive to the recommendation performance.

Moreover, in Fig. 4(b), the proposed SSRL framework and the
GPR framework were conducted on two Amazon data sets to
how the average reward and the corresponding recommenda-
ion accuracy of each epoch. It is seen that the average reward of
GPR under the subsequent epoch is higher than that of SSRL pro-
osed in this paper. However, in terms of accuracy, SSRL is better
han PGPR. The inconsistency between ave_reward and recom-
endation accuracy reflects that the policy and value function
f PGPR have a pseudo-high reward when they choose actions
nd evaluate path reward. If the agent relies on this pseudo-high
eward driven strategy for action selection, it will result in a state
f high reward and low accuracy. Compared with PGPR, the SSRL
mproves the quality of the policy by considering the feedback of
he current policy selection action based on the value evaluation
f the subsequent states under the current state and by using
he loss constraint to correct the value function with error in
he state value evaluation. The policy of SSRL does not naturally
ave a pseudo-high value of the total reward obtained from the
enerated path. Thus, the average reward per epoch of SSRL is
ower than that of PGPR.
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Table 3
Comparison accuracy on two data sets. The results are reported in percentage (%). The Imp. (%) indicates the
percentage of accuracy improvement.
Models Clothing Beauty

Recall Precision HR NDCG Recall Precision HR NDCG

BPR 1.035 0.176 1.751 0.611 4.198 1.133 8.253 2.771
VBPR 0.971 0.165 1.555 0.558 2.779 0.898 5.940 1.899
TransRec 2.071 0.309 3.109 1.236 4.851 1.279 0.863 3.215
DeepCoNN 2.328 0.230 3.291 1.314 5.426 1.118 9.798 3.361
CKE 2.501 0.386 4.281 1.498 5.941 1.373 11.032 3.699
JRL 2.979 0.439 4.630 1.731 6.942 1.543 12.769 4.393
LightGCN 3.467 0.536 5.377 2.011 7.134 1.622 13.063 4.988
PGPR 4.769 0.723 6.957 2.853 8.434 1.737 14.553 5.547

SSRL-DR 5.060 0.759 7.291 2.984 8.554 1.757 14.749 5.621
SSRL-L 4.964 0.729 7.147 2.932 8.539 1.767 14.760 5.613
SSRL 5.092 0.764 7.367 3.008 8.791 1.802 15.035 5.753
Imp. (%) +6.77 +5.67 +5.89 +5.43 +4.23 +3.74 +3.31 +3.71
Fig. 4. (a): Recommendation accuracy of SSRL and PGPR vs. hidden-layer sizes. (b): Average reward of SSRL and PGPR vs. epochs.
4.3. Ablation study

We conducted some experiments to verify the impact of each
innovation in the proposed framework SSRL on recommendation
performance with two variants of the SSRL framework:

SSRL-DR: The dual-reward driven strategy is used. The loss con-
straint is not used as the reinforced signal to supervise the policy
gradient update.

SSRL-L: The loss constraint is used as the reinforced signal to
supervise the policy gradient update. The dual-reward driven
strategy is ignored.

As shown in Table 3, the recommendation accuracy of SSRL-DR
and SSRL-L is better than that of PGPR, which shows that the dual-
reward driven strategy and the loss constraint as a reinforcement
signal to supervise the policy gradient update method improve
the quality of the model’s policy, thereby effectively improving
the recommendation accuracy.

4.4. Parameter sensitivity study

To study the impact of the two hyper-parameters of SSRL:
the epoch of training and the hidden layer size of the Actor–
Critic network, on the recommendation accuracy. Fig. 5 shows
the accuracy of SSRL with increasing training epochs on the two
Amazon data sets.

As shown in Fig. 5(a) and (c), on the Beauty data set, the
average reward of the agent and the accuracy of the model
8

begin to stabilize when the epoch is about 40. A similar trend
is observed in the Clothing data set as shown in Fig. 5(b) and (d).
The reason is that the model is still under-fitting in the early stage
with the small training epoch, which leads to the low average
reward of the agent and the low accuracy of the model. In the
later stage, the model fitting is completed gradually. The effect of
the model tends to be stable. In Fig. 4(a), the model performs the
worst when the hidden layer size is 64, especially on the Clothing
data set. The reason is that when the size is 64, the model is
over-fitting on the smaller data set (Beauty), but still has room
to improve on the large data sets (Clothing).

4.5. Performance comparison of explanation

Explainable recommendation generates a reasonable and ef-
fective process reasoning path when making recommendations.
Table 4 compares the explainability of different explainable rec-
ommendation models, in terms of Precision and Recall, on two
Amazon data sets. Baselines, SSRL-DR and SSRL-L, are proposed
in this work, as well as the PGPR model.

The results show that SSRL outperforms the baselines in terms
of Precision and Recall, on the Beauty and Clothing data sets. For
example, compared with PGPR, SSRL improves 2.5% in terms of
Recall and 2.4% in terms of Precision on Beauty; it improves 4.2%
in terms of Recall and 1.5% in terms of Precision on Clothing.
This indicates that the dual-reward can guide the policy to find

effective recommendation paths.
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Table 4
Explainability on two data sets. The percentage represents the explainability of
the top-5 of the results (%). The Imp. (%) indicates the percentage of accuracy
improvement.
Data set Beauty Clothing

Metrics Recall Precision Recall Precision

PGPR 4.165 11.917 4.698 13.354

SSRL-DR 4.215 12.015 4.754 13.411
SSRL-L 4.20 11.956 4.746 13.399
SSRL 4.27 12.204 4.899 13.56
Imp. (%) 2.5 2.4 4.2 1.5

4.6. Effectiveness of dual-reward

This section evaluates the effectiveness of the dual-reward in
he recommendation reasoning task. We show the policy opti-
ization of the RL action selection by the dual-reward driven
echanism, which effectively adjusts the number and propor-

ion of inference paths. In principle, the reasoning path driven
ith dual-reward can obtain more rewards than that of the real
ituation, which is also consistent with the goal of RL.
Table 5 shows the distribution of different reasoning paths dis-

inguished by first-order and second-order actions. The reasoning
aths are generated by PGPR and SSRL, respectively. It is clear
hat the proportion of reasoning paths with first-order action of
‘purchase’’ generated by SSRL increases, with the corresponding
umber of 2528 and 25185, respectively, whereas the proportion
f reasoning paths with first-order action of ‘‘mention’’ decreases,
ompared with PGPR on the Beauty and Clothing data sets. Be-
ides, the proportion of second-order action of ‘‘described_by’’
n the reasoning paths generated by SSRL is higher than that
enerated by PGPR. The main reason is that the SSRL model
akes the decision not only based on the correlation of actions

n the action space in the current state but also combines with
he impact of the action selections in the future state.

.7. Case study

Understanding how to use the reasoning paths to explain
he recommendation results, we give some case studies on the
ecommendation results with the reasoning paths, which are
enerated by our SSRL.
Path patterns: As shown in Fig. 1, there are some path pat-

terns, which are abstracted from the reasoning paths gener-
ated by our model. The first-order relationship of path patterns
mainly includes two types: mention and purchase. Coincidentally,
the path pattern

{
User

purchase
−−−−→ Item

purchase
←−−−− User

purchase
−−−−→

tem
}

and the path pattern
{
User

purchase
−−−−→ Item

related_actions
−−−−−−−→

elated_entities
related_actions
←−−−−−−− Item

}
belong to user-based collabo-

ative filtering and content-based recommendation respectively.
9

Case-based paths: We provide several recommendation re-
ults with corresponding reasoning paths to demonstrate the
ffectiveness.
As shown in Fig. 6, from the Clothing data set, in Case 1,
user purchased an item ‘‘Owl Necklace’’ that was bought by

‘another user’’. Meanwhile, ‘‘another user’’ also purchased ‘‘Owl
ead Pendant Necklace’’. Therefore, our model recommended

‘Owl Head Pendant Necklace’’ to this user. The reasoning path
enerated by Case 1 conforms to the principle of collaborative
iltering, and the explainable path as the recommended result
s reasonable. In Case 2, a user purchased an item ‘‘Mens 2-
ar Polo Shirt’’, which fell into the category ‘‘Polo Shirt’’. Thus,
SRL recommended to the user another item ‘‘Sport Polo Shirt’’
hich was also in the same category ‘‘Polo Shirt’’. Based on the

dea of collaborative filtering, the path generated by Case 2 can
easonably be used as the interpretation path of recommenda-
ions. In Case 3, a user bought an item ‘‘Apricot Scrubble Facial
ash’’ and also viewed another item ‘‘Eye Gel’’. Considering that
ther users who purchased ‘‘Shea Butter by Brut for Men’’ would
lso buy ‘‘Eye Gel’’, our method accordingly recommended ‘‘Shea
utter by Brut for Men’’ to the user. In Case 4, a user’s reviews
entioned the feature words ‘‘Argan’’, so SSRL recommended the

tem ‘‘Argan Oil’’ described by ‘‘Argan’’ to the user. Case 4 which
akes recommendations based on users’ comments, accurately
btains users’ needs along with some reasonable explanation
aths. This is in line with the idea mentioned in ADAC [20] and
GPR [6] that the shorter the reasoning path, the more direct
he relationship, and the stronger the explanation. The Case 5, a
ser purchased ‘‘Bracelet’’ and also viewed another item ‘‘Howlite
ecklace’’. Considering that other users who purchased ‘‘Ball Stud
arrings’’ would also view ‘‘Howlite Necklace’’, SSRL accordingly
ecommended ‘‘Ball Stud Earrings’’ to the user. Also, in Case 5, the
enerated reasoning path conforms to the collaborative filtering
dea, and can be well used as an interpretable path.

It can be seen from Table 5 that, compared with PGPR, the
roposed SSRL generates more explainable paths whose first ac-
ion is ‘‘purchase’’. Based on the results of explainable accuracy
n Table 4, it shows that SSRL, to some extent, provides some ex-
lainable paths for recommendations, which cannot be supported
y the paths generated by PGPR. For example, in Fig. 6, PGPR
nfers the Case 1 with the following reasoning path user

mention
−−−−→

Necklace
described_by
←−−−−−− HowliteNecklace

noop
−−→ HowliteNecklace. How-

ever, the user in Case 1 does not plan to purchase ‘‘Howlite
Necklace’’. From all of the above observations, we conclude that
SSRL provides corresponding accurate reasoning paths for recom-
mendations.

5. Conclusion

To solve the problem of recommendation path reasoning of
RL, we proposed a SSRL framework to automatically perform
the recommendation reasoning over KGs, in which an improved
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Table 5
The distribution of all reasoning paths generated by PGPR and SSRL, on the Beauty and Clothing data sets.
Data set Beauty Clothing

Methods Actions(Total) Step1 action(Ratio) Step2 action(Ratio) Actions(Total) Step1 action(Ratio) Step2 action(Ratio)

PGPR 1329726 mention(97.99%) described_by(99.92%)
2 139832 mention(91.95%) described_by(98.4%)

mention(0.08%) mention(1.6%)

purchase(2.01%) / purchase(7.97%) /

SSRL 1360722 mention(97.84%) described_by(99.99%)
2 341269 mention(90.87%) described_by(99.64%)

mention(0.01%) mention(0.36%)

purchase(2.15%) / purchase(8.36%) /
Fig. 6. Case study on recommendation reasoning task.
ctor–Critic algorithm utilizes short- and long-term knowledge-
ware to perform path reasoning. To recommend the most po-
ential path, the reinforced loss constraint was integrated into
L loss to update the gradient. Experimental results demonstrate
hat our proposed framework outperforms several competitive
aselines. SSRL is a general framework for explainable recom-
endations in various fields, such as e-commerce, movie, music,
nd news. Our results show that the RL-based recommendation
odel with KG is effective with more convincing explanations.
lso, the dual-reward driven strategy is more efficient in im-
roving the recommendation performance when combining the
hort-term reward with the long-term incremental evaluation.
Limitations. As Actor–Critic algorithms usually cause poten-

ial information loss, the stability of SSRL which is trained by
ctor–Critic algorithm, is unsatisfactory. We can alleviate this
ssue by using TRPO [31] to limit the step size for each gradient.
esides, like most existing RL-based recommendation methods,
10
SSRL has not yet developed the intrinsic mechanism of RL algo-
rithm. To better understand how SSRL generates the explanations,
we will use the causal inference procedure [63] to exploit the
interpretability of the SSRL model.

Future work. It would be interesting to use a Transformer
method to exploit associated information of entities in KGs. Our
SSRL combined with this information can further improve rec-
ommendation accuracy. Another meaningful research direction is
leveraging Natural Language Processing (NLP) to generate textual
sentence explanations for the reasoning paths.
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