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ABSTRACT Accurately predicting the Remaining Useful Life (RUL) of a Li-ion battery plays an important
role in managing the health and estimating the state of a battery. With the rapid development of electric
vehicles, there is an increasing need to develop and improve the techniques for predicting RUL. To predict
RUL, we designed a Transformer-based neural network. First, battery capacity data is always full of noise,
especially during battery charge/discharge regeneration. To alleviate this problem, we applied a Denoising
Auto-Encoder (DAE) to process raw data. Then, to capture temporal information and learn useful features,
a reconstructed sequence was fed into a Transformer network. Finally, to bridge denoising and prediction
tasks, we combined these two tasks into a unified framework. Results of extensive experiments conducted on
two data sets and a comparison with some existing methods show that our proposed method performs better
in predicting RUL. Our projects are all open source and are available at https://github.com/XiuzeZhou/RUL.

INDEX TERMS Li-ion battery, remaining useful life, transformer, denoising auto-encoder, neural network.

I. INTRODUCTION
Having light weight, high-energy density, good performance
and a long lifetime, the rechargeable Lithium-ion (Li-ion)
battery is widely applied in various devices [1]–[4]. However,
as the charge-discharge cycle increases, capacity generally
degrades. Prognostics and Health Management (PHM) meth-
ods, of which the prediction of Remaining Useful Life (RUL)
is a very important component, are necessary to ensure
the reliability and safety of an electronic device [5]–[7].
To ensure safety, prediction of RUL in advance provides
some key information about the maintenance and replace-
ment of batteries [8]–[10]. Fig. 1 illustrates a toy-example of
battery use.

An accurate prediction of lifetime and estimation of
health for batteries are crucial for durable electronic devices.
Recent advancements and achievements in machine learning
in various fields have piqued interest in the estimation
of data-driven battery health [4], [11], [12]. For exam-
ple, to account for the effects of discharge current and
ambient temperature, Ng et al. [13] proposed a naive
Bayes model to predict the RUL. Regarding the prognos-
tics of battery health, Nuhic et al. [14] explored applying
Support Vector Machine (SVM) to learn the decay pro-
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FIGURE 1. Example of battery capacity degradation.

cess. Also, for prognostics and to model battery degradation,
Liu et al. [15], by online learning, developed the Relevance
Vector Machine (RVM).

Recently, remarkable success has been achieved by
deep learning in various fields, such as recommender sys-
tems [16]–[18], Computer Vision (CV) [19]–[21], and Nat-
ural Language Processing (NLP) [22]–[24]. To learn about
the nonlinear nature of battery capacity, deep learning
models are also widely applied to RUL prediction. For
example, to capture the relationship between RUL and a
charge curve, Multi-Layer Perceptron (MLP) was used to
describe the charge process and the terminal voltage curve of
a battery [2], [25], [26]. To assess the State Of Health (SOH),
Recurrent Neural Network (RNN) was developed to simulate
the nonlinear trend [27]–[29]. To learn about inclination of
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battery degradation, Long Short-Term Memory (LSTM) was
applied to the capacity sequence [8], [30], [31].

When predicting RUL, RNN-based frameworks, including
Gate Recurrent Unit (GRU) and LSTM, are effective solu-
tions for modeling sequential data. Although most existing
RNN-based frameworks have shown promising performance,
they have the following three major problems:

(1) Using RNN-based networks to model sequential data
in a recurrent manner not only results in high time costs
for training, but also degrades performance due to long-term
dependency [32]–[34];

(2) To learn representation, raw data is fed directly to
the neural networks; however, the training data are always
full of noise, especially when capacity regeneration occurs.
The highly dynamic and nonlinear capacity curve affects
RNN-based methods [28], [31], [35].

(3) In most methods, data denoising and model prediction
are two separate tasks; thus, the correlation between the two
tasks is ignored [28], [36], [37].

To address these problems, we designed a novel neural net-
work to model sequential capacity patterns. In the network,
a Transformer, which effectively and efficiently captures use-
ful information of the sequences, serves as the body of the
model. To learn trends from the sequences, the multi-head
attention network of the Transformer accelerates the train-
ing performance of the neural networks. To the best of our
knowledge, this is the first Transformer-based architecture to
predict RUL in the field of Li-ion batteries.

Also, to build a robust network, it is necessary to deal
with noise, outliers, and irrelevant data. The representation
ability of a neural network heavily relies on the quality of
the source. Thus, to accurately predict RUL, the Denoising
Auto-Encoder (DAE), with its powerful ability to learn rep-
resentation from noisy raw data, is used to reconstruct input
data.

Finally, for better generalization, we propose an objec-
tive function to bridge denoising and prediction, instead
of solving these two tasks separately. The learning pro-
cedure optimizes both tasks simultaneously in a unified
framework.

II. RELATED WORK
A. PROBLEM DEFINITION
An accurate, timely RUL predictor is important for a battery
to maintain advance warning of potential risk [11]. For bat-
teries, SOH, a health indicator for battery aging, represents
the states of battery in each charge-discharge cycle [31], [38].
RUL is defined by the following capacity ratio:

SOH (t) =
Ct
C0
× 100%, (1)

where C0 denotes rated capacity, and Ct denotes the mea-
sured capacity of cycle, t . As the number of times a battery
is charged/discharged increases, capacity degrades. For a
battery, End of Life (EOL) which is closely related to its
capacity [39], is defined as the point when remaining capacity

FIGURE 2. Example of RUL prediction.

reaches 70-80% of initial capacity [31], [40]. Fig. 2 illustrates
an example of RUL prediction.

B. DEEP LEARNING FOR RUL
Because Li-ion batteries are a source of power for many
devices, it is critical to ensure their reliability and safety.
RUL prediction and SOH evaluation have become increas-
ingly important topics and have received considerable
attention in recent years. Methods to predict RUL for
batteries are classified into two kinds: model-based and
data-driven [4], [41], [42].

1) MODEL-BASED
To fit the degradation curve of a battery, mathematical mod-
els are built to describe the physical properties. However,
in practice, for a battery working under some noisy and
uncertain environments, it is difficult for mathematical mod-
els to accurately assess the SOH [27], [43]–[46].

2) DATA-DRIVEN
Data-driven methods are modeled on historical data without
considering any properties of the battery. Because of their
flexibility and ease of operation, data-driven methods receive
more popular attention [47]–[50].

Neural network based data-driven methods possess
good generalization and powerful feature extraction
ability [2], [51]. To predict RUL for Li-ion batteries, many
deep learning models have been proposed. For RUL pre-
diction, MLP is applied to learn nonlinear degradation [2],
[25]. However, it poorly captures the temporal information
from the input sequence. To deal with the sequence data,
many RNN-based frameworks, including RNN, LSTM and
GRU, have been designed [8], [31], [52]. However, RNN-
based frameworks with a recurrent manner have a high time
cost for training and degrade performance due to long-term
dependency. To speed up training, CNN is used [36], [53].
But when it comes to time series, CNN, as MLP, runs into the
same problem: it achieves limited performance in degradation
trend.

19622 VOLUME 10, 2022



D. Chen et al.: Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries

TABLE 1. Major notations used in this paper.

Transformers, which perform well in encoding text, have
been explored for various applications, such as recommenda-
tion systems [54], [55] and CV [56], [57]. They parallelly and
effectively capture long-range dependencies by an attention
mechanism. Owing to the effectiveness and efficiency of
Transformers in modeling long sequences, we explore using
them to capture the weight of capacities at different time steps
in the prediction of RUL.

Also, to further improve accuracy, various modules are
combined to gain their advantages [11], [36], [58], [59].
Although those deep learning methods have achieved great
success in exploring battery decay trends, they train directly
on noisy data, which limits the model to learn accurate repre-
sentations. To denoise and get clean input data, Lu et al. [37]
proposed AE-GRU, in which an autoencoder was used in the
data pre-processing step to extract the features of the original
data, and GRU was used to learn the long-term inclination.
However, in AE-GRU, data denoising and RUL prediction are
two separate tasks; thus, the correlation between the two tasks
is ignored. In this paper, we propose an objective function
to bridge denoising and prediction and optimize both tasks
simultaneously in a unified framework.

III. THE PROPOSED METHOD
The main goal of our model is to predict RUL from histor-
ical records. Therefore, first we describe our architecture in
detail. Then, we describe the objective function, which jointly
combines DAE and prediction loss.

FIGURE 3. Denoising transformer network for RUL prediction.

A. DENOISING TRANSFORMER NETWORK FOR RUL
To provide for uninterrupted battery operation and determine
appropriate maintenance, accurate and timely prediction of
RUL is important. To solve the problem of most existing
RNN-based methods, we designed a deep learning archi-
tecture, Denoising Transformer (DeTransformer) network,
consisting of four parts: input and normalization, denoising,
Transformer, and prediction. The architecture is shown in
Fig. 3. Table 1 lists the major notations used throughout this
paper.

1) INPUT AND NORMALIZATION
To reduce the influence of input data distribution changes
on neural networks, the data must be normalized. Let x =
{x1, x2, . . . , xn} denote the input sequence of capacity with
length n, which is mapped to (0, 1]:

x′ =
x
C0
, (2)

where C0 denotes rated capacity.

2) DENOISING
Raw input is always full of noise, especially when
charge/discharge regeneration occurs. In most methods, raw
data is fed directly to the neural networks without any denois-
ing. These noise data seriously affect the prediction accuracy
of the methods. To maintain stability and robustness, input
data must be denoised before being fed into deep neural
networks. DAE, an unsupervised method in learning useful
features, which is adopted by our method, reconstructs input
data from lower-dimensional representation preserving as
much information as possible in the process.

Let x′t =
{
x ′t+1, x

′

t+2, . . . , x
′
t+m

}
∈ x′ denote the slice of

input with m samples of a sequence. Gaussian noise is added
to the normalized input to obtain the corrupted vector, x̃t .
DAE serves two purposes: denoising the raw input and learn-
ing nonlinear representation:

z = a
(
WT x̃t + b

)
, (3)
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where W , b, a(·), and z denote weight, bias, activation func-
tion, and output of the DAE encoder, respectively.

Then, to reconstruct the input vector, the latent representa-
tion is mapped back to the input space, defined as follows:

x̂t = f ′
(
W ′z+ b′

)
, (4)

whereW ′, b′, z and f ′(·) denote weight, bias, output, and map
function of the output layer of the DAE encoder, respectively.

In our network, identity and ReLU functions are used as
the decoding and encoding activation, respectively. Finally,
the objective function is defined as follows:

Ld =
1
n

n∑
t=1

`(̃xt − x̂t )+ λ
(
‖W‖2F +

∥∥W ′∥∥2
F

)
, (5)

where ` (·) denotes a loss function.
Because the structure of DAE is symmetrical, some

weights can be tied, i.e. W = W ′, thereby accelerating
training by reducing the number of weights of the model.

3) TRANSFORMER
The standard Transformer is a sequence-to-sequence archi-
tecture, consisting of an encoder and a decoder. The encoder
takes the input sequence andmaps it into a higher dimensional
vector, which is then fed into the decoder to generate an
output sequence. In this paper, the encoder of the Transformer
is used to learn long-term dependencies of the capacity degra-
dation from battery working records.

The Transformer layers are a stack of Transformer
encoders that extract the degradation features from the recon-
structed data, with two sub-layers:Multi-Head Self-Attention
and Feed-Forward. To fully use the position information of
the sequence, we inject some relative position tokens into the
sequence. In this paper, we use sine and cosine functions of
different frequencies [60]:

PE(t, 2k) = sin(t/100002k/m) (6)
PE(t, 2k + 1) = cos(t/100002k/m), (7)

where t denotes the time step.
The Multi-Head Self-Attention sub-layer aims to capture

the dependencies between features and ignores their distances
in the sequence [54]–[57]. Given the representation of the
(l − 1)-th layer, H l−1 and h parallel attention functions, the
i-th (i ∈ [1, h]) attention is defined:

headi = Attention
(
H l−1W l

Q,H
l−1W l

K ,H
l−1W l

V

)
, (8)

where W l
Q, W

l
K , and W

l
V ∈ Rd×dh are projection weights.

Let Q, K , and V denote query, key, and value, Scaled Dot-
Product Attention defined as follows::

Attention (Q,K,V) = softmax

(
QKT

√
dh

)
V , (9)

where dh = d/h, which avoids avoiding extremely small
gradients and produces a softer attention distribution [60].

Then, theMulti-Head Attention is defined as follows:

MultiHead
(
H l−1

)
= [head1; head2; · · · ; headh]WO, (10)

whereWO is a trainable weight.
Feed-Forward, which has two different mappings (linear

and ReLU nonlinear), is applied to each time step identi-
cally and separately. Then, we obtain H l from the previous
MultiHead

(
H l−1) as follows:
H l
= FFN

(
MultiHead

(
H l−1

))
, (11)

FFN (x) = ReLU (xW1 + b1)W2 + b2. (12)

4) PREDICTION
Finally, to predict unknown capacity, a full connection layer
is used to map the representation learned by the last Trans-
former cell to arrive at the final prediction x̂t , namely, x̂i+m+1:

x̂t = f
(
WpHh

+ bp
)
, (13)

where Wp, bp, Hh, and f (·) denote weight, bias, input, and
map function of the prediction layer, respectively.

B. LEARNING
There are two tasks in our model: denoising and prediction.
Instead of solving these two tasks separately, we propose
an objective function to bridge these tasks. The learning
procedure optimizes both tasks simultaneously in a unified
framework. Mean Square Error (MSE) is used to evaluate
loss, and the objective function is defined as follows:

L =
n∑

t=T+1

(xt − x̂t)2 + α
n∑
i=1

`(̃xi − x̂i)+ λ� (2) , (14)

where α denotes a parameter to control the relative contri-
bution of each task; λ denotes a regularization parameter;
�(·) denotes the regularization; 2 denotes the learning
parameters of our model.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) DATA SETS
We conducted experiments using two public data sets: NASA
and CALCE. The NASA data set, available from the NASA
Ames Research Center web site,1 contains the record of four
different Li-ion batteries, with each Li-ion battery repeating
three operations: charge, discharge, and impedance measure-
ments [61], [62]. Similarly, the CALCE data set is avail-
able from the Center for Advanced Life Cycle Engineer-
ing (CALCE) of the University of Maryland2 [63]–[65].

2) BASELINE APPROACHES
We compared our models to the following methods:
• MLP [2], with multiple fully connected layers, is used
to learn the dynamic and nonlinear degradation trend of
a battery.

• RNN [27], with multiple RNN units, is used to
predict RUL.

1https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-
repository/#battery

2https://calce.umd.edu/data#CS2
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TABLE 2. Overall performance on NASA and CALCE data sets.

• LSTM [8], with multiple LSTM units, is used to learn
the degradation trend from the input sequence.

• GRU [66], with multiple GRU units, is used to learn
features from sequences.

• Dual-LSTM [52], with two different LSTM cells in
point detection, is used to capture the non-linearity
between capacities.

3) EVALUATION METRICS
First, the three evaluation metrics used to evaluate the predic-
tion performance of RUL are the following: Relative Error
(RE), Mean Absolute Error (MAE) and RMSE. The three
evaluation metrics are defined as follows:

RE =

∣∣RULpred − RUL true∣∣
RUL true

(15)

RMSE =

√√√√ 1
n− T

n∑
t=T+1

(xt − x̂t)2 (16)

MAE =
1

n− T

n∑
t=T+1

‖xt − x̂t‖ (17)

where n denotes the length of a sequence, and T denotes the
length of samples generated from a sequence for training.

Then, a leave-one-out evaluation is used to evaluate our
models: one battery is sampled randomly; the remainder are
used for training. Finally, after five iterations, the average
score over all batteries is determined.

4) PARAMETER SETTINGS
Our model has six key parameters: sampler size (m), learning
rate (τ ), depth (l) and hidden size (s) of Transformer, regular-
ization for learning (λ), and ratio of each task (α).m can be set
about 5∼10% of the length of a sequence. In our experiments,
m is fixed at 16 and 64 for NASA and CALCE, respectively.
The rest parameters were determined by grid-search on the

validation error: τ is chose from {10−4, 5× 10−4, 10−3, 5×
10−3, 10−2}; s is chose from {8, 16, 32, 64}; l is chose from
{1, 2, 3, 4}; λ is chose from {10−6, 10−5, 10−4, 10−3}; α is
set from (0, 1].
Because RE is highly related to the RUL of a battery,

we chose RE as our major evaluation metric. In terms of
the RE, optimal parameters of all methods for the two data

TABLE 3. Optimal parameters of RE scores for two data sets.

sets are listed in Table 3. All codes are run on Pytorch 1.8.0,
Python 3.7, and Cenos 7 Systems with i9 CPU.

B. RESULTS AND ANALYSIS
1) OVERALL PERFORMANCE
First, experiments were conducted to verify the performance
of our methods on different data sets. Table 2 shows the RE,
MAE and RMSE scores obtained for all methods. The best
results are shown in bold.

From the results shown in Table 2, we conclude the fol-
lowing: (1) Among all methods, our models achieve the best
experimental results. The results demonstrate that our model
extracts useful temporal information in the modeling capacity
sequences. (2) On both data sets, DeTransformer is stable
and robust and always makes good predictions, regardless of
whether a capacity sequence is long or short. Also, DeTrans-
former shows an even greater improvement on NASA.
Possibly, for networks, a long sequence offers sufficient infor-
mation to train; however, representation ability is limited
when only one feature is fed into the network for a short
sequence. (3) Among the baseline methods, MLP performs
the worst, because it fails to take into account the effects of
temporal information. Our model and all RNN-based models
predict trends better than MLP, which means that it is nec-
essary to add sequential information to predict RUL well.
The attention networks of Transformer capture the overall
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FIGURE 4. Effect of autoencoder.

inclination by modeling correlations among historical capac-
ity features. Thus, our model simulates well the effects of his-
torical capacities in sequence states. (4)RNN achieves better
scores for MAE and RMSE on NASA, but, worse on CALCE
when compared with LSTM, GRU, and Dual-LSTM. The
best possible reason is that the sequence length is different
in the two data sets. LSTM and GRU are better at learning
features from long sequences than RNN, which is also a defi-
ciency in the nature of RNN. In all metrics, DeTransformer
does exceptionally well on RE, which is directly related to
the RUL of a battery. Potentially, the reason is that battery
charge/discharge regeneration degrades the learning of the
model on the trends. To refine the representation, our models
reduce noise in a raw sequence with an autoencoder. In sum-
mary, our method outperforms other competitive approaches,
which suggests that our method is effective for extracting
meaningful temporal features to more accurately predict the
RUL of a battery.

2) EFFECT OF AUTOENCODER
Then, we demonstrate the improvement in performance by
using an autoencoder. We compared our models with their
simplified versions without an autoencoder by setting differ-
ent values for the hidden size. The average scores of RE,
MAE, and RMSE with changing hidden sizes are shown
in Fig. 4.

From Fig. 4, it is seen that all scores first increase and then
decrease with an increase in hidden size. The most probable
reason is that Transformer has limited weights to obtain
sufficient temporal information, leading to under-fittingwhen
hidden size is too small. When hidden size is too large,
Transformer has too many weights to learn temporal infor-
mation. Also, for all metrics, with an increase in the hidden
size of Transformer in most cases, our models performed
better than their simplified versions, indicating that an added
autoencoder improves performance in the prediction of RUL.

FIGURE 5. Time cost (seconds) of all neural networks on two data sets.

The nonlinear capacity curve contains much noise, especially
when capacity regeneration occurs. Most neural networks are
trained directly on the raw data, which influences themodel in
learning representation. However, to make better predictions,
our models are trained on the refined data generated by DAE,
which has the powerful ability to learn useful features from
input with much noise. Therefore, an autoencoder shows
strong improvement over our methods.

3) TIME COST
Finally, we studied the time cost of all neural networks on
two data sets (See Fig. 5). From Fig. 5, it is seen that the
training time of LSTM, GRU, and Dual-LSTM, is much
longer than for the other models. Potentially, the reason is that
all RNN-based networks modeled on sequences in a recurrent
manner lead to higher time costs for training and inference.
AlthoughMLP is rapid, it does not work verywell experimen-
tally on sequential data. RNN and DeTransformer are very
close in training speed. However, our approach always yields
the best results. To learn trends from sequences, a multi-head
attention network of a Transformer accelerates the training
performance of neural networks. Finally, we conclude that,
with a multi-head attention network applied in our model,
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Transformer learns features in parallel, which are more suit-
able for predicting RUL.

V. CONCLUSION
With a RUL predictor, an accurate estimation of RUL,
a safer battery system, and longer battery service life can
be achieved. We proposed a novel neural network model for
RUL prediction. First, DAE was used to learn representation
from corrupted input and then used to reconstruct input.
Second, from the reconstructed input, Transformer networks
were used to learn the feature for capacity fading. Finally,
we designed an objective function, which combines jointly
DAE loss and prediction loss. Compared with existing RUL
methods, our models achieve better performance as indicated
by lower RE, MAE, and RMSE scores.

In the future, we plan to extend our methods to more practi-
cal applications. First, training a model using part of a record
may not be robust enough and may be lopsided. Thus, to fully
train, more charge-discharge data will be added to our model.
Also, in practice, a batterywill be examined under operational
conditions, such as different working temperatures and cur-
rents, which have a large impact on degradation trends. Thus,
an estimation of RUL for a battery under different operating
conditions will be studied further.
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