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Assuming that both users and items are independent and identically distributed, most existing methods
model user-item pairs, while ignoring the relationship between items, leading to limited performance.
To solve this problem, we propose a novel neural network, CoNet, which can effectively model the
co-occurrence pattern for Collaborative Filtering (CF). We argue that items always occur in pairs, i.e.
an item co-occurrence pattern. For example, movies "Harry Potter 1" and "Harry Potter 2" are always
viewed by users who like magic style films. To learn the latent features, CoNet is simultaneously
modeled on user-item and item-item interactions. Compared with methods that train on a single
user-item pair, CoNet can encode highly descriptive features from the co-occurrence pattern.

To achieve a better performance, we design an attention network to learn the weight of a user’s
preference for different items and subsequently aggregate the weighted embeddings to obtain the
co-occurrence representations. Finally, we conducted extensive experiments using several data sets,
which show that the proposed method is superior to other baseline approaches. Source code of CoNet
is available from https://github.com/XiuzeZhou/conet.
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1. Introduction

Recommender systems, integrated into many applications
such as e-commerce [1,2], entertainment [3,4] and social net-
works [5,6], provide personalized recommendation services for
users. To alleviate the information overloading problem, recom-
mender systems help users find the best-suited service or product
among a plethora of options [7,8].

Matrix Factorization (MF) [9] learns low-dimensional latent
features to represent each user and item [10]. Most MF-based
Collaborative Filtering (CF) methods combine user and item latent
features linearly, which results in limited performance when
dealing with highly complicated real-world data [11,12]. For bet-
ter performance, many deep learning architectures have been
proposed to capture nonlinear relationships encoded by their
hidden layers. For example, Convolutional Neural Network (CNN),
which has achieved outstanding achievements in Computer Vi-
sion (CV), is also applied to learn high-order correlations among
latent features for recommendation [13,14].

To extract the meaningful features from the raw data, ef-
fective feature extraction methods, such as Variational Auto-
Encoder (VAE) [15,16] and Denoising Auto-Encoder (DAE) [17-
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19], are adopted. Multi-Layer Perceptron (MLP), the most com-
monly used neural network architecture, learns deep and non-
linear representations [11,20]. Through hidden layers of neural
networks, those methods effectively capture high-order informa-
tion from user-item interactions. Those methods, widely applied
to recommender systems, have achieved great success.
However, most CF-based methods assume that all items are
independently, and separate all examples into distinct, unrelated
instances. Those methods learn representation from user-item
interactions. For one time, only a single user-item pair is used for
training. However, the methods face one major challenge, i.e. the
coupling relationships between items is ignored during training.
Inspired by Liang et al. [21], we designed a novel neural
network architecture, CoNet, which takes the advantage of item
co-occurrence from user-item interaction data. We assume that
items usually occur in pairs, i.e. an item co-occurrence pattern,
which is a simple but effective way to enhance features learning.
Fig. 1 illustrates a toy-example of movie co-occurrence pat-
terns. When one user (who likes magic style films) always
watches “Harry Potter 1” and “Harry Potter 2”, it is highly proba-
bly that user will give the same rating to both. Our model learns
features not only from user-item interactions (as is the case with
most methods), but also from item-item co-occurrence infor-
mation, a powerful ability to capture the relationship between
items.
Another important assumption for co-occurrence modeling is
that the more frequently the two items occur together, the more
similar they are. For example, in users’ records, movies “Harry
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Fig. 1. Example of movie co-occurrence patterns.

Potter 1” and “Harry Potter 2” always appear together. Thus,
we argue that both movies are similar and close to each other.
By training on co-occurrence patterns, the relationship between
items can be better discovered.

Also, in recommendation tasks, to learn latent features, many
existing neural network-based approaches [11,13,22] model com-
plex structures of user-item interactions. However, the perfor-
mance of neural network-based approaches is limited by the
assumption that all items of a user contribute equally during
the interaction modeling process. To value users’ preferences for
items, in deep leaning models, an attention network is widely
applied. For example, Cao et al. [23] applied an attention net-
work to learn a aggregation strategy for group recommendation
tasks; Chen et al. [24] used an attention-based network to give
explanations to users; Xiao et al. [12] proposed attention net-
works in factorization machines to learn the weights of features.
Therefore, the attention mechanism is a promising technique for
valuing users’ preferences for their items.

Thus, to capture users’ interests in different items, we incorpo-
rated an attention network to our model to weigh users’ different
preferences. When one item is compared with another, users
have distinct preferences towards one, although both items are
rated equally. The attention network places higher values on the
item that might have received a higher interest rating from the
user, thereby providing a new perspective for exhibiting a close
connection between the two items.

We show that there are three advantages to the proposed
model:

(1) It performs well when a co-occurrence pattern is used
to train our model. To learn the latent features effectively, our
model is simultaneously modeled on user-item and item-item
interactions. Compared with methods that train on a single user—
item pair, our model learns more useful features from the co-
occurrence pattern;

(2) Rather than treating preferences uniformly, the attention
mechanism is used to automatically assigns weights to value a
user’s different preferences over items;
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(3) Because it explicitly captures the latent relationship be-
tween items, it is comparatively descriptive. Compared with the
existing methods, our model provides more interpretable results.

2. Preliminaries

Given a user set U = {uy, uy,..., Uy} and an item set | =
{i1, 12, ..., in}, the interaction matrix R € R™™ is defined:

17
Ty =

0,
Then, generated from R, we construct a new interaction ma-
trix, Y € R™™ ™ about users and their item pairs, as follows:

yuij:{

where y,; = 1 denotes that user, u, interacts with items i and j,
i.e. items i and j are co-occurring for user u; y,; = 0 denotes that
in user u’s historical record, no interaction is observed between
items i and j.

if a observed interaction between u and i;
otherwise.

(1)

13
0,

if ry=1andr,; =1
otherwise ’

(2)

3. Related work

First, in addition to some background information, we review
MF, one of the most widely used methods for CF. Then, we
briefly introduce a neural network method, Neural Collaborative
Filtering (NCF).

3.1. Matrix factorization (MF)

Let P € R¥" and Q € R¥*™ denote the low-rank latent
features of users and items, respectively, where k denotes the
number of latent features. p, € R¥! and q; € R**! denote the
latent features of user, u, and item, i, respectively. Given a set
of observed instances, 0, the goal of MF is to learn P and Q to
reconstruct R:

L= (rui—pia)’ + 2 (IPIZ + Q).

(u,iye0

(3)

where A is a regularization parameter; and || - ||§ denotes the
Fibonacci-norm.

3.2. Neural collaborative filtering (NCF)

One problem with MF-based methods is that they cannot
capture high-order features from user-item interactions [11,25].
Neural network is a good method for learning complex and high-
order features from data [26]. NCF, a MLP-based framework for
CF, is shown in Fig. 2.

A user-item pair (u, i) as a sparse input, is mapped to embed-
ding vectors to obtain their dense representation and then fed to
MLP to learn deep structures on user-item interactions. Finally,
the user-item pair obtains its prediction, 7,;, from the last hidden
layer of MLP, formulated as follows:

fui = fue Py, @) (4)

Then, to measure the loss of all user-item pairs, we use
binary cross-entropy loss:

L=— Y rloghi+(1—ry)log(1—Tu),
(1,1)€0U0~

(5)

where O~ denotes the set of negative instances.
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Fig. 2. Framework of NCF.
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Fig. 3. Framework of CoNet.

4. The proposed method

We design a neural network: CoNet, for implicit feedback.
From the perspective of users, items are co-occurring, and using
items co-occurrence pattern for CoNet, called items CoNet. This is
our primary perspective; therefore, in the rest of this paper, we
treat CoNet as an items CoNet. Similarly, from the perspective of
items, users are co-occurring, CoNet also can be modeled on a
users co-occurrence pattern.

4.1. Architecture

CoNet learns its latent features from user-item and item-
item interactions. CoNet aims at predicting the probability that
a user will be interested in an item after CoNet is trained on
a co-occurrence pattern. Fig. 3 illustrates the neural network
framework of CoNet, which consists of the following seven layers:
input, embedding, attention, co-occurrence, interaction, hidden,
and predictive.

Input and Embedding Layers. The embedding layer of a neural
network aims to convert an input from a sparse representation
into a dense one, defined as follows:

Dy :flookup(uL (6)
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qi :flookup(i)» (7)
Co-occurrence Layer. The co-occurrence layer aims to obtain
co-occurrence vectors by compressing two co-occurrence em-
beddings into one. Co-occurrence pattern, a key factor to bet-
ter formulate the personalized ranking problem helps model to
learn mutual correlations between cross users/items. The item-
item co-occurrence vector is computed by aggregating two item
embeddings, defined as follows:

(8)
9)
where v;; denotes the co-occurrence feature of items i and j;
fc(+) denotes the function to calculate the co-occurrence features
from embeddings q; and g;. Without attention network, arithmetic
mean is a simple and effective method to obtain v;;:
I 1 q;
=Ty

'U,‘j :fC (qi7 q]) )
sit.q=f(q;,q),

(10)

Attention Layer. The attention layer aims to learn different
weights of items that interact with users and then aggregate
weighted embeddings to generate their co-occurrence represen-
tation. The attention network learns the importance of each of
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the items and assigns proper weights to them, representing user
preferences over items.

Rather than applying a predefined strategy, we adopt a new
aggregation strategy to obtain the interaction between a user and
his items. To learn the weight of different items that interact with
users, an attention network is designed.

We assume that a user, when comparing one item with an-
other, tends to pay different interest in one of the items, although
the user rates each of the items the same when rating them
separately. Therefore, in CoNet, rather than treating the items
uniformly and separately, an attention mechanism is used to
learn the weights of each pair-wise interaction.

CoNet calculates a weighted sum for a pair of item represen-
tations, where weights are adaptively learned from the attention
neural. It places a higher value on the preferred item, defined as
follows:

v = aig; + (1 — o), (11)

where v;; denotes the co-occurrence feature from weighted em-
beddings; «; denotes the relative preference degree for item, i, of
user, u, when facing items i and j. The attention score for user u
and item i is defined as follows:

Sui =fa (puv qi) s

where f;(-) denotes the function of the attention network. We use
pgq,- as the attention score for user u and item i. Then, the weight
of the contribution of the attention network for co-occurrence
vectors is defined as follows:

exp (Sui)
exp (sui) + exp (syj)
. r (13)
1+ exp (Sy — Sui)
=0 (Sui - Suj) )

where o (-) is the sigmoid function.

(12)

o

Interaction Layer. The interaction layer aims to capture the row-
rank relationships by modeling user-item interactions in the
shallow layer:

ho = fi (py, ) (14)
where fi(-) denotes the interaction functions between p, and g;,
such as concatenation, element-

wise product, and element-wise sum. We chose concatenation as
our interaction function.

Hidden Layers. Hidden layers aim to capture high-rank relation-
ships and nonlinear correlations between users and items. Hidden
layers provide neural networks a powerful ability to model the
high-rank relationships between features as follows:

h, =a(W§h0+b1), (15)

h,=a (W{h[_,1 =+ bl_) s (16)

where W), b, and h; denote weight, bias, and output of the Ith
(0 < I <L) layer, respectively; a(-) denotes activation function.
Predictive Layer. This layer aims to map the outcome of the final
hidden layer to predict probability, y,;;, formulated as follows:

Juj =0 (Wh, +by) (17)

where W, and b, denote weight and bias, respectively; o(-)
denotes the activation function, sigmoid.

After the network is well trained, we predict the possibility,
Yui, of user u on item i. Arithmetic mean, Eq. (10), is used to replace
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Table 1
Statistics for all data sets.
MovieLens100K MovieLens1M Lastfm
# of Users 943 6040 518
# of items 1682 3706 3488
# of interactions 100,000 1,000,209 46,172
Density 6.30% 4.47% 0.26%

the attention mechanism, i.e. set q; = g; to obtain v; = ¢;. Then,
(u, i) is fed to our neural network to make predictions.

Learning. Cross-entropy is used to evaluate loss and the L2 norm
is used to regularize all learning parameters. Then, we define the
objective function:

n
L==Y" " yuloghui+ (1 —yu) log(1—Tuy),

u=1 (i,j)ecuc—

(18)

where € and C~ denote the set of observed and unobserved
interactions in Y, respectively.

Similarly, from the perspective of items, CoNet modeled on a
user co-occurrence pattern is designed in a same framework.

5. Experiments

First, we describe the experimental settings, including data
sets and preprocessing, evaluation metrics, baseline approaches,
and parameter settings. Then, we experiment with the following
questions one-by-one:

-RQ1: Compared with other methods with a single user-item
pair, how does our model perform?

-RQ2: How effective is our designed attention network? Does
our network provide better performance with it than without it?

-RQ3: Can our model discover the relationship between items?

5.1. Experimental setting

Data Sets and Preprocessing. Experiments were conducted using
three publicly available data sets: Lastfm, MovieLens100K, and
MovieLens1M. Lastfm collected from Last.fm, is available from
the GroupLens web site.! MovieLens100K and MovieLens1M col-
lected by GroupLens [27], are available from its web site.2 Some
statistics are shown in Table 1.

Baseline Approaches. Conet is compared against the following
baselines:

e ItemPop [28], a non-personalized method model, uses the
number of interactions of items to rank;

BPR [29], one popular MF-based methods for ranking learn-
ing, provides personalized ranking by optimizing a pair-wise
loss function;

NCF [11], a neural network architecture, MLP, is used to
make predictions;

NeuMF [11], a neural network method, which combines a
linear kernel, learns low-rank features by Generalized Ma-
trix Factorization (GMF) and learns high-rank features by
NCF from user-item interactions;

DeepCF [30], a neural network ranking learning model, in
which the row, R,,, is used to represent user u, and the
column, R,;, is used to represent item i.

1 https://grouplens.org/datasets/hetrec-2011/.
2 https://grouplens.org/datasets/movielens/.
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Table 2

NDCG@10 and HR@10 scores of all models.
ItemPop NCF BPR NeuMF DeepCF CoNet
MovieLens100K HR@10 0.4163 0.6628 0.6801 0.6886 0.6932 0.7063
NDCG@10 0.2407 0.3914 0.3949 0.4008 0.4093 0.4182
MovieLens 1M HR@10 0.4638 0.6704 0.6932 0.7045 0.7014 0.7083
NDCG@10 0.2694 0.4077 0.4123 0.4201 0.4222 0.4304
Lastfim HR@10 0.4822 0.7089 0.7044 0.7111 0.7251 0.7480
NDCG@10 0.3378 0.4926 0.4923 0.5096 0.5185 0.5341

Parameter Settings. Comparing the models with a fixed embed-
ding dimension is more meaningful [31]. Therefore, we set some
key parameters in all models to the same value: learning rate,
regularization coefficient (1), and embedding size (latent feature
size) are set at 0.001, 107>, and 64, respectively; for all neural
network models, batch size and epochs are set at 1024 and 32,
respectively.

Adam [32], was chosen the optimizer for our objective func-
tion. We reported the performance of all results without pre-
training and determined their average values after randomly run-
ning five times using the same settings. All personalized methods
were implemented by TensorFlow. To ensure the generalization,
8 to 64 negative examples were sampled to pair with one positive
example.

Evaluation Metrics. To evaluate ranking performance, the leave-
one-out evaluation was used by Deng et al. [30], Song et al.
[22], He et al. [11], Xue et al. [33], and Rendle et al. [29]. For each
user, the latest rated item and 100 randomly sampled unrated
ones were selected as testing data. Then, we adopted NDCG and
Hit Ratio (HR) to measure the top-n performance. NDCG@n is
defined as follows:

DCG@n

IDCG@n

1201
DCG@n = _
; log(1+1)

1’
i = {O

where IDCG@n denotes the maximum possible value of DCG.
Then, given a list with n items, we define the HR@n as follows:

hits
HR@n = —
n

NDCG@n =

if the item at position i is a hit item
other

where hits is the number of times items in the list for each user.
5.2. Overall performance (RQ1)

First, we conducted experiments using three data sets, and the
performance of all methods is shown in Table 2. From Table 2,
we observe the following: (1) In terms of both HR and NDCG,
the results of all methods are consistent on different data sets;
(2) Compared with the results of other baseline approaches us-
ing the same data set, CoNet always achieves the best results
and performs considerably higher NDCG and HR values than
other baseline methods. The sequence of average performance
(ItemPop < BPR < NCF < NeuMF < DeepCF < CoNet) suggests
that our model can make good predictions with co-occurrence
patterns; (3) For HR@10 and NDCG@10, a comparison of the
results for NCF and NeuMF (models built on user-item pairs) and
CoNet shows that CoNet achieves significantly best performance
on MovieLens100K, MovieLens1M, and Lastfm. The best results
indicate that the co-occurrence pattern is effective for models to
learn more meaningful embeddings; (4) Similarly, a comparison
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of the results for DeepCF (a model built on user and item vectors)
and CoNet shows that too many users and items involved in
modeling do not guarantee good effect. For too many factors
improve the effect of DeepCF at the same time bring a lot of
noise, which degrades its performance. In summary, for tackling
CF tasks, CoNet trained with co-occurrence patterns performs
well.

5.3. Effect of attention network (RQ2)

To fully explore the capacity of our model, we investigate the
effect of an attention network for recommendation. An attention
network provides a strong force for users to evaluate their pref-
erence levels. The weights learned from the attention network
are used to estimate the co-occurrence features. The goal of the
attention network is to learn each user’s pair-wise preferences for
different items.

In these experiments, for comparison, we used arithmetic
mean instead of the attention network, and the performance of
CoNet with and without the attention network (See Fig. 4). As
seen from Fig. 4, in general, on all data sets, the results for HR
and NDCG are consistent. As the number epoch increases, all
the methods improve in predicting ranking performance. Also,
CoNet with the attention network, always achieves higher NDCG
and HR scores than itself with arithmetic mean under the same
settings, showing the good performance of the attention network
for our model. Therefore, we conclude that adding the attention
mechanism, which is critical for good predicting, enables our
model to provide higher quality recommendations.

5.4. Discover the relationship (RQ3)

Finally, we further validated the relationship between the
items in our model. In these experiments, we compared CoNet
with other personalized methods to show their ability to discover
the relationship between items. A Cosine function was used to
measure the distance between the items of the trained embed-
dings of items. NeuMF has two groups of embedding: MLP and
GMF, so it is not suitable for calculating the similarity of items.
For simplicity, only the MovieLens100K was used.

As seen from Table 3, with the MovieLens100K data sets, the
top-4 items provided by CoNet are more interpretable than the
others. For example, given Raiders of the Lost Ark, an action and
adventure style film, BPR, NCF, DeepCF, and CoNet offer users
3/4, 1/4, 3/4, and 4/4 movies of the same style, respectively.
Also, CoNet recommends users the sequel to the film: Indiana
Jones and the Last Crusade. Similarly, given The Godfather, our
model offers its sequel: The Godfather: Part II, to users. But other
methods cannot obtain these results. Star Trek is one of the most
popular series of movies. It has more sequels, a higher relative
rated density, which helps methods to easier access to learn
similar features. In addition to NCF, the other three models can
achieve good results that all of them can find similar movies. We
conclude that the co-occurrence pattern is a sensible strategy for
improving the performance of CF.



M. Chen, Y. Li and X. Zhou

o)
@ 04
<
I

ArithmeticMean

(a) HR on MovieLens100K

Arithmetic Mean

—— Attention Network o

0 1 2 3 4 5 6 7 8 9 10

(b) HR on MovieLens1M

Future Generation Computer Systems 124 (2021) 308-314

epochs

(c) HR on Lastfm

NDCG@10

—— Arithmetic Mean
ASTOTEUCTEaT Attention Network

Attention Network 0.

6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

epochs

(d) NDCG on MovieLens100K

(e) NDCG on MovieLens1M

Fig. 4. Effect of attention network.

epochs

(f) NDCG on Lastfm

Table 3
Relationship between movies.
Movie name top NCF BPR DeepCF CoNet
1 The Empire The Empire The Empire The Empire
Strikes Back Strikes Back Strikes Back Strikes Back
2 The Terminator Back to the Future Alien Braveheart
the Lost Ark 3 Alien The Silence of the Lambs Fallen Indiana Jones and the Last Crusade
4 Blade Runner Forrest Gump Young Frankenstein Terminator 2: Judgment Day
1 Fargo Schindler’s List Dead Man Walking Star Wars
2 Star Wars Dead Man Walking Star Wars Fargo
The Godfather 3 Return of the Jedi Twelve Monkeys Fargo The Godfather: Part II
4 Dead Man Walking Star Wars Return of the Jedi Return of the Jedi
1 Star Trek IV Star Trek IV Star Trek VI Star Trek III
Star Trek 2 Spawn Star Trek III Star Trek III Star Trek VI
3 Star Trek VI Star Trek V Star Trek V Star Trek V
4 Incognito Conan the Barbarian Fallen Judge Dredd

6. Conclusion

We proposed a novel neural network framework, CoNet, with
a powerful ability to represent and cover user preferences from
a co-occurrence pattern, which contains more informative inter-
actions between users and items. Unlike existing CF methods
modeled on a single user-item pair, to make predictions, we
modeled on user-item and item-item interactions simultane-
ously. To learn a personalized weight preference for each user, an
attention network is added to CoNet. The attention network pro-
vides an adaptive weighting strategy for CoNet to learn a user’s
preference level for items. The experimental results show that
CoNet achieves quite outstanding performance for high quality
recommendations.

In our future work, first, to enrich latent features, we will
explore incorporating auxiliary information, such as textual and
visual information, into our model. Second, interaction functions
are important for our models to learn the relationships between
user-item and item-item. Thus, a more effective function is need
to be studied further. Finally, to further improve recommendation
performance, we plan to investigate integration with other neural
network models.
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